期刊文献+

基于条件Wassertein生成对抗网络的图像生成 被引量:6

Image generation based on conditional-Wassertein generative adversarial network
下载PDF
导出
摘要 生成对抗网络(GAN)能够自动生成目标图像,对相似地块的建筑物排布生成具有重要意义。而目前训练模型的过程中存在生成图像精度不高、模式崩溃、模型训练效率太低的问题。针对这些问题,提出了一种面向图像生成的条件Wassertein生成对抗网络(C-WGAN)模型。首先,该模型需要识别真实样本和目标样本之间特征对应关系,然后,根据所识别出的特征对应关系进行目标样本的生成。模型采用Wassertein距离来度量两个图像特征之间分布的距离,稳定GAN训练环境,规避模型训练过程中的模式崩溃,从而提升生成图像的精度和训练效率。实验结果表明,与原始条件生成对抗网络(CGAN)和pix2pix模型相比,所提模型的峰值信噪比(PSNR)分别最大提升了6.82%和2.19%;在训练轮数相同的情况下,该模型更快达到收敛状态。由此可见,所提模型不仅能够有效地提升图像生成的精度,而且能够提高网络的收敛速度。 Generative Adversarial Network(GAN)can automatically generate target images,and is of great significance to the generation of building arrangement of similar blocks.However,there are problems in the existing process of model training such as the low accuracy of generated images,the mode collapse,and the too low efficiency of model training.To solve these problems,a Conditional-Wassertein Generative Adversarial Network(C-WGAN)model for image generation was proposed.First,the feature correspondence between the real sample and the target sample was needed to be identified by this model,and then the target sample was generated according to the identified feature correspondence.The Wassertein distance was used to measure the distance between the distributions of two image features in the model,the GAN training environment was stablized,and mode collapse was avoided during model training,so as to improve the accuracy of the generated images and the training efficiency.Experimental results show that compared with the original Conditional Generative Adversarial Network(CGAN)and the pix2 pix models,the proposed model has the Peak Signal-to-Noise Ratio(PSNR)increased by 6.82%and 2.19%at most respectively;in the case of the same number of training rounds,the proposed model reaches the convergence state faster.It can be seen that the proposed model can not only effectively improve the accuracy of image generation,but also increase the convergence speed of the network.
作者 郭茂祖 杨倩楠 赵玲玲 GUO Maozu;YANG Qiannan;ZHAO Lingling(School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;Beijing Key Laboratory of Intelligent Processing for Building Big Data(Beijing University of Civil Engineering and Architecture),Beijing 100044,China;School of Computer Science and Technology,Harbin Institute of Technology,Harbin Heilongjiang 150001,China)
出处 《计算机应用》 CSCD 北大核心 2021年第5期1432-1437,共6页 journal of Computer Applications
基金 国家自然科学基金面上项目(61871020) 北京市教委科技计划重点项目(KZ201810016019) 北京市属高校高水平创新团队建设计划项目(IDHT20190506) 北京建筑大学2020年度研究生创新项目(PG202005)。
关键词 图像生成 生成对抗网络 条件生成对抗网络 Wassertein距离 image generation Generative Adversarial Network(GAN) Conditional Generative Adversarial Network(CGAN) Wassertein distance
  • 相关文献

参考文献2

二级参考文献156

共引文献438

同被引文献55

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部