期刊文献+

卷积神经网络在纺织及服装图像领域的应用 被引量:12

Application of Convolutional Neural Network in Textile and Clothing Image Field
下载PDF
导出
摘要 随着大数据时代的到来,作为类脑计算领域的一个重要研究成果,卷积神经网络(convolutnioal neural networks,CNNs)已广泛应用于多个领域。与传统机器学习相比,卷积神经网络拥有更复杂的网络结构和更多隐藏层,有更强的特征学习和特征表达的能力,已被较好地运用处理多个大规模分类识别任务。目前纺织服装行业大量丰富的图像数据正好迎合了它的应用,已经有许多纺织服装图像领域的研究运用卷积神经网络技术,并取得了较好的效果。梳理了卷积神经网络运用在图像分类和目标检测两方面的主要经典网络结构,并分别介绍了这些网络为更好地应用于纺织服装领域而进行的改良与创新,最后结合现阶段发展给出未来可以运用的理论方向。 With the advent of big data era,as an important research achievement in brain-like computing,convolutional neural networks(CNN) has been widely applied in many fields.Compared with traditional machine learning,convolutional neural network has more complex network structure and more hidden layers,and owns stronger feature learning ability and feature expression ability.It has been used to deal with many large-scale classification and recognition tasks.At present,a large number of rich image data in the textile and clothing industry just meet its application,and many researches in the field of textile and garment image have adopted convolutional neural network technology and achieved good results.This paper summarized the main classical network structures of convolutional neural network used in image classification and target detection,and introduced the improvement and innovation of these networks for better application in the field of textile and clothing.Finally,the future theoretical direction was provided based on the current development.
作者 林碧珺 耿增民 洪颖 李雪飞 LIN Bi-jun;GENG Zeng-min;HONG Ying;LI Xue-fei(Information Center,Beijing Institute of Fashion Technology,Beijing 100029,China;Basic Course Department,Beijing Inseitute of Fashion Technology,Beijing 100029,China)
出处 《北京服装学院学报(自然科学版)》 CAS 北大核心 2021年第1期92-99,108,共9页 Journal of Beijing Institute of Fashion Technology:Natural Science Edition
基金 北京教委科技计划一般项目(KM202010012008)。
关键词 卷积神经网络 图像分类 目标检测 纺织 服装 convolutional neural network image classification target detection textile clothing
  • 相关文献

参考文献14

二级参考文献147

  • 1陈俊杰,谢春萍.自动验布系统[J].纺织科技进展,2004(5):56-57. 被引量:10
  • 2任建峰,郭雷,李刚.多类支持向量机的自然图像分类[J].西北工业大学学报,2005,23(3):295-298. 被引量:7
  • 3李刚,曾锐利,林凌.基于射频识别技术的智能交通系统[J].信息与控制,2006,35(5):555-559. 被引量:20
  • 4盛冠忠,李龙.关于山羊绒鉴别有关问题的探讨[J].毛纺科技,2007,35(12):52-55. 被引量:11
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 6Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 7Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 8Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 9Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 10Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.

共引文献669

同被引文献77

引证文献12

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部