期刊文献+

基于Bagging-CNN雷达信号分类方法 被引量:4

Radar Signal Classification Method Based on Bagging-CNN
下载PDF
导出
摘要 针对雷达辐射源信号在低信噪比情况下分类精度不高、分类结果具有偏向性,设计了一种基于集成学习结合深度学习的雷达信号分类方法。首先利用模糊函数特征对雷达信号进行特征提取,对提取的图像特征进行预处理得到网络训练的数据集。然后构造一个集成多个卷积神经网络分类模型对雷达信号进行识别。采用5种不同的雷达信号进行验证,实验结果表明,相比于单个卷积神经网络,采用集成学习和卷积神经网络结合的分类方法有助于提高低信噪比信号的分类效果。 In order to solve the problem of low classification accuracy and biased classification results of radar radiation signals at low SNR,a radar signal classification method based on integrated learning and deep learning was designed.The fuzzy function feature was used to extract the radar signal,and the extracted image feature was processed to obtain the network training data set.Then an integrated multiple conventional neural network classification model is constructed to identify radar signals.Five different radar signals are used for verification.The experimental results show that compared with a single conventional neural network,the classification method combining integrated learning and conventional neural network is helpful to improve the classification effect of low SNR signals.
作者 孙艺聪 田润澜 刘冲 郭扬 SUN Yicong;TIAN Runlan;LIU Chong;GUO Yang(School of Aviation Operations and Services, Aviation University of Air Force, Changchun 130022, China;Air Force Staff Electronic Warfare Radar Bureau, Beijing 100000, China;Air Force Aviation University Education support Center, Changchun 130022, China)
出处 《兵器装备工程学报》 CAS CSCD 北大核心 2021年第5期191-195,226,共6页 Journal of Ordnance Equipment Engineering
基金 国家自然科学基金项目(61571462)。
关键词 集成学习 卷积神经网络 模糊函数 图像预处理 信号分类 ensemble learning conventional neural network ambiguity function image pre-processing signal classification
  • 相关文献

参考文献7

二级参考文献107

  • 1陈卫,吕贵洲,梁四洋,何强.参数化时频分析综述[J].现代雷达,2008,30(2):61-64. 被引量:4
  • 2李霞,张田文,郭政.一种基于递归分类树的集成特征基因选择方法[J].计算机学报,2004,27(5):675-682. 被引量:26
  • 3唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 4谷雨,徐宗本,孙剑,郑锦辉.基于PCA与ICA特征提取的入侵检测集成分类系统[J].计算机研究与发展,2006,43(4):633-638. 被引量:25
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 6Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 7Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 8Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 9Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 10Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.

共引文献744

同被引文献28

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部