期刊文献+

基于SLAM技术的无人驾驶小型纯电动扫路机器人技术方案

Technical Solution of Automatic Small Pure Electric Sweeping Robot Based on SLAM Technology
下载PDF
导出
摘要 介绍了目前无人驾驶小型纯电动扫路机器人的功能分类、构成、SLAM算法及实现方式,简要介绍了无轨道扫路机器人的自动寻迹方式,提出了不同导航系统的技术难点与优缺点,分析了目前主流的无轨道小型扫路机器人的导航定位系统与主动避障算法,对机器人功能结构做出了系统的划分与定义,为此类产品的企业提供了技术参考。 The functional classification,structure,SLAM algorithm and implementation of the current automatic small pure electric road sweeping robot are introduced.The automatic tracking method of the trackless sweeping robot is briefly introduced,and the technical difficulties,advantages and disadvantages of different navigation systems are put forward.The navigation and positioning system and active obstacle avoidance algorithm of the current mainstream trackless small road sweeping robot are analyzed,and a systematic division and definition of the functional structure of the robot have been made,which provided a technical reference for enterprises of this type of product.
作者 李晓东 LI Xiao-dong
出处 《专用汽车》 2021年第5期84-88,共5页 Special Purpose Vehicle
关键词 SLAM算法 扫路机器人 自动寻迹方式 导航定位系统 SLAM algorithm sweeping robot automatic tracking method navigation and positioning system
  • 相关文献

参考文献3

二级参考文献65

  • 1Neim J, Tardos J D, et al. Fusing range and intensity images for mobile robot localization[ J]. IEEE Transaction on Robotics and Automation. 1999,15(1) : 76 -84.
  • 2Shiele B, Cmwley J. A comparison of position estimation techniques using occupancy grids [ J]. Robotics and autonomous systems. 12 (1994) : 163 -171.
  • 3Simmon R, Koenig S. Probabilistic navigation in partially observable environments[ A]. Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI95) [ C ]. 1995. 1080 -1087.
  • 4Smith R, Self M, Checseman P. A stochastic map for uncertain spatial relationships [ A ]: The Fourth International Symposium on Robotics Research[ C]. 1988. 467 -474.
  • 5Stroupe A W, Martin M C, Balch T. Distributed sensor fusion for object position estimation by multi-robot systems[ A]. PmceedinKs of the IEEE International Conference on Robotics and Automation (ICRA01)[C]. Seoul, Korea: May, 2001.1092-1098.
  • 6Thrun S, Fox D, Burgard W, Dellaert F. Robust Monte Carlo localization for mobile robots[ J]. Artificial Intelligence, 2001,128 : 99 -141.
  • 7Ulrich I, Nourbakhsh I. Appearance-based Place Recognition for Topological Localization[A]. Proc Of the IEEE International Conference on Robotics and Automation [C]. 2000,2:1023 -1029.
  • 8Weiss G, Wetzler C, Puttkamer E V. Keeping track ff poeition and orientation of moving indoor systems by correlation of range-finder scans[ A]. Proceedings of the IEEF,/RSJ/GI lnternatkmal Conference on Intelligent Robots and Systems "Advanced Robotic Systems and the Real World "[ C ]. Munich: Germany. 1994, ( 1 ) : 595 - 601.
  • 9Anousaki G C, Kyrlakapoulos K J. Simultaneous localization and map building for mobile robot navigation[J]. IEEE Robotics and Automation Magazine, September, 1999:42-53.
  • 10Arms K, Tomatis N. Improving robustness and precision in mobile robot localization by using laser range finding and monocular vision [ A ]. Proc Of the 3rd European Workshop on Advanced Mobile Robot [C]. Zurich, Switzedand, 1999. 177-185.

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部