摘要
为了快速寻找短波频段内的目标频点,结合宽带频谱感知技术,提出了基于变邻域粒子群搜索(VNS-PSO)的短波双向探测频率选择算法。现有的探测频率选择算法依据频点的平均信噪比进行评估选优,未考虑短波信道的小尺度随机衰落特性,难以满足实时选频的要求。文中VNS-PSO算法依据大尺度衰落的相关特性,采用最大分离法得到初始探测频点集,以此来划分相关邻域;针对邻域内频点质量选择性衰落特点,采用粒子群优化算法搜索邻域内频点,得到邻域内最优解;通过变换邻域,得到全局最优解。仿真实验表明:“最快速度”建链时,VNS-PSO算法较VNS-RS、AASS、RSS算法MTOBC分别降低17.1%、18%、85.5%,当CPOS=0.9,建链时间分别降低2.5%,42.6%,81.7%,缩短了建立可通链路的时间;“最优频点”建链时,VNS-PSO算法较VNS-RS、AASS、RSS算法MTOBC分别降低11%、12.5%、45%,当CPOS=0.9,建链时间分别降低22.2%、22.4%、44.4%,短时间可找到最优频点。
In order to quickly find an optimal frequency point in the HF frequency band,a HF bidirectional detection frequency selection algorithm based on the variable Neighborhood particle swarm search(VNS-PSO)is proposed in combination with the broadband spectrum sensing technology.The existing detection frequency selection algorithms are difficult to meet the needs of real-time frequency selection because they are mainly based on the average signal-to-noise ratio of the frequency points to evaluate and select the best,and the small-scale random fading characteristics of the short-wave channel is left out of consideration.According to the correlation characteristics of large-scale fading,the initial detection frequency set is obtained by the maximum separation method to divide the correlation neighborhood.According to the characteristics of mass selective fading of neighborhood internal frequency points,particle swarm optimization algorithm is used to search neighborhood internal frequency points and to obtain the local optimal solution.The global optimal solution is obtained by transforming the neighborhood.The simulation experiment shows that when“The fastest speed”is used to build the chain,compared with VNS-RS,AASS and RSS,MTOBC of the VNS-PSO algorithm reduces by 17.1%,18% and 85.5% respectively.When the CPOS=0.9,the chain building time decreases by 2.5%,42.6% and 81.7% respectively,the time for establishing a passable link is shortened.When“optimal frequency point”is used to build the chain,the MTOBC of VNS-PSO algorithm reduces by 11%,12.5%,and 45% respectively,compared with VNS-RS,AASS,and RSS algorithms.When the CPOS=0.9,the chain building time reduces by 22.2%,22.4%,and 44.4% respectively,and the optimal frequency point can be found in a short time.
作者
杨博
王叶群
黄国策
刘剑
王桂胜
YANG Bo;WANG Yequn;HUANG Guoce;LIU Jian;WANG Guisheng(Information and Navigation College,Air Force Engineering University,Xi’an 710077,China)
出处
《空军工程大学学报(自然科学版)》
CSCD
北大核心
2021年第2期54-59,共6页
Journal of Air Force Engineering University(Natural Science Edition)
基金
陕西省自然科学基础研究计划(2020JM-344)
航空科学基金(201901096001)。
关键词
频率选择
短波通信
变邻域搜索
粒子群优化
frequency selection
HF communication
variable neighborhood search
particle swarm optimization