期刊文献+

基于多分支深度可分离卷积神经网络的滚动轴承故障诊断研究 被引量:21

Fault diagnosis of rolling bearings based on a multi branch depth separable convolutional neural network
下载PDF
导出
摘要 针对传统滚动轴承故障诊断方法存在抗噪性差、需要人工特征提取、计算量较大、对运行设备要求高的问题,提出一种基于多分支深度可分离卷积神经网络(MBDS-CNN)的滚动轴承故障诊断方法,利用深度可分离卷积和权重剪枝技术对模型尺寸进行压缩,通过多分支结构保证模型的精度,避免梯度消失现象的发生。使用模型尺寸、诊断精度、预测速度作为评价指标对模型进行评估。试验结果证明,基于多分支深度可分离卷积神经网络的滚动轴承故障诊断,可以在噪声环境下有效识别轴承不同部位故障程度,提高了诊断效率,降低了对运行设备性能的要求。 Aiming at the disadvantages of traditional rolling bearing fault diagnosis methods,such as poor robust,need for artificial feature extraction,large amount of computation,and high requirements for the running equipment,a fault diagnosis method for rolling bearings based on a multi branch depth seperable convolutional neural network(MBDS-CNN)was proposed.Using the depth separable convolution and weight pruning technology to compress the model size,the multi-branch structure ensures the accuracy of the model and avoids the phenomenon of gradient disappearance.The model was evaluated by using a test set,using the model size,diagnostic accuracy,and prediction speed as evaluation indicators.The experimental results show that the fault diagnosis method for rolling bearings based on the MBDS-CNN can effectively identify the fault degree of different parts of the bearing in the noise environment,improve the diagnostic efficiency and reduce the performance requirements of the running equipment.
作者 刘恒畅 姚德臣 杨建伟 张骄 LIU Hengchang;YAO Dechen;YANG Jianwei;ZHANG Jiao(School of Mechanical-Electronic and Vehicle Engineering,Beijing University of Civil Engineering Architecture,Beijing 100044,China;Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;Beijing Mass Transit Railway Operation Corporation Ltd.,Beijing 100044,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第10期95-102,共8页 Journal of Vibration and Shock
基金 国家自然科学基金(51605023,51975038) 北京市自然科学基金(L191005) 北京市教委科研计划一般项目(SQKM201810016015) 北京市属高校高水平教师队伍建设支持计划青年拔尖人才培育计划项目(CIT&TCD201904062,CIT&TCD201704052) 北京建筑大学市属高校基本科研业务费专项资金(X18133,X20071) 北京建筑大学研究生创新项目(PG2019092) 北京建筑大学科学研究基金(00331615015)。
关键词 滚动轴承 故障程度 抗噪性 卷积神经网络(CNN) 故障诊断 rolling bearing fault degree anti-noise convolutional neural network(CNN) fault diagnosis
  • 相关文献

参考文献3

二级参考文献21

共引文献480

同被引文献139

引证文献21

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部