期刊文献+

基于级联过完备字典稀疏表征的滚动轴承复合故障诊断方法 被引量:8

Compound faults diagnosis method of rolling bearing based on sparse representation of cascaded over complete dictionary
下载PDF
导出
摘要 针对滚动轴承多故障特征相互耦合不易诊断的问题,提出了一种将级联过完备字典与以基追踪降噪问题为优化原则的特征符号搜索(FSS)算法相结合的轴承复合故障诊断方法。该方法根据轴承故障冲击响应信号的特点,以轴承阻尼二阶系统的单位冲击响应函数作为级联过完备字典基函数,并通过相关滤波法获取构建字典的参数。结合得到的字典,使用特征符号搜索算法对信号中不同类型的故障冲击成分进行稀疏分解并重构,进而实现各故障特征的分离和提取。轴承复合故障仿真信号和实测信号的分析结果表明,所提方法能有效地分离和提取出复合故障中的各类故障特征,同时对降噪具有极好的鲁棒性。 Aiming at the problem that multi fault features of rolling bearing are coupled and difficult to diagnose,a bearing compound faults diagnosis method is proposed,which combines cascaded over complete dictionary with feature sign search(FSS)algorithm based on the optimization principle of basis pursuit de-noising.According to the characteristics of the bearing fault impulse response signal,the unit impulse response function of the bearing damping second-order system is used as the basis function of the cascaded over complete dictionary,and the parameters of the dictionary are obtained by the correlation filtering method.Combining the obtained dictionary,using the feature sign search algorithm to sparsely decompose and reconstruct different types of fault impact components in the signal,and then realize the separation and extraction of each fault feature.The analysis results of the simulated and measured signals of bearing compound faults show that the proposed method can effectively separate and extract various fault features in compound faults,and at the same time has excellent robustness to noise reduction.
作者 郑胜 刘韬 刘畅 李华 ZHENG Sheng;LIU Tao;LIU Chang;LI Hua(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第10期174-179,217,共7页 Journal of Vibration and Shock
基金 国家重点研发计划(2018YFB1306103) 国家自然科学基金(52065030,51875272) 云南省重大科技专项计划(202002AD080001) 云南省重点研发计划(2017FA028)。
关键词 轴承复合故障 级联过完备字典 基追踪降噪 特征符号搜索(FSS) 相关滤波 bearing compound faults cascaded over complete dictionary basis pursuit de-noising feature sign search(FSS) correlation filtering
  • 相关文献

参考文献5

二级参考文献35

  • 1YuDejie ChengJunsheng YangYu.FAULT DIAGNOSIS APPROACH FOR ROLLER BEARINGS BASED ON EMPIRICAL MODE DECOMPOSITION METHOD AND HILBERT TRANSFORM[J].Chinese Journal of Mechanical Engineering,2005,18(2):267-270. 被引量:14
  • 2尹忠科,邵君,Pierre Vandergheynst.利用FFT实现基于MP的信号稀疏分解[J].电子与信息学报,2006,28(4):614-618. 被引量:25
  • 3杜海平 张亮 史习智.柴油发动机缸盖振动信号时域识别方法研究[J].振动工程学报,2000,13:152-155.
  • 4孟庆丰.基于应用内涵研究故障特征提取技术[J].振动工程学报,2000,13:97-101.
  • 5Lin J, Qu L. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis [ J ]. Journal of Sound and Vibration, 2000, 234( 1 ) :135 -148.
  • 6Wang S B, Huang W G, Zhu Z K. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis [ J ]. Mechanical Systems and Signal Processing,2011,25 (4) : 1299 - 1320.
  • 7Kankar P K, Sharma S C, Harsha S P. Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform [ J ]. Neurocomputing, 2013, 110 : 9 - 17.
  • 8Cheng J S, Yu D J, Tang J S, et al. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis [ J ]. Mechanism and Machine Theory, 2008, 43:712 -723.
  • 9Li Y J, Tsea P W, Yang X. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engineer [ J]. Mechanical Systems and Signal Processing, 2010, 24:193-210.
  • 10Peng F Q, Yu D J, Luo J S. Sparse signal decomposition method based on multi-scale ehirplet and its application to the fault diagnosis of gearboxes [ J ]. Mechanical Systems and Signal Processing,2011,25:549 - 557.

共引文献94

同被引文献113

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部