期刊文献+

界面张力梯度驱动对流向湍流转捩的研究 被引量:4

Study on bifurcation to chaos of surface tension gradient driven flow
下载PDF
导出
摘要 作为空间自然对流热质输运的基本形式,界面张力梯度驱动对流是流动和传热强耦合的复杂非线性过程,也是一个多控制参数耦合作用的过程,表现出丰富的流动时空特征.界面张力梯度驱动对流是微重力流体物理的重要研究内容和学科前沿,同时在空间燃料输运过程和空间能源或热管利用等空间流体管理问题中均有重要应用.本文综述了界面张力梯度驱动对流向湍流转捩研究的背景意义、地面实验、空间实验及数值模拟的研究现状,重点介绍了从非线性动力学角度来研究转捩规律的具体方法,目前最常见的手段是对观测量的时间序列进行分析,通过频谱分析及相空间重构等方法计算时间序列的特征量,从而判断流动模式,这类方法理论成熟,计算简单,但需要对大量数据进行繁琐的处理;另一种方法是通过数值计算分岔来研究对流在时空中的转捩模式,这类方法可以直接计算出分岔点,但是复杂之处在于需要求解大规模的线性或非线性方程组,本文详细阐述了两种方法的理论背景,应用状况及局限性,探讨了将两种方法相互结合,在研究中互为补充的可能,并对今后的研究方向提出了建议. As the primary heat and mass transfer mechanism in space through natural convection,surface tension gradient-driven convection is a complex nonlinear process concerning strong coupling between fluid flow and heat transfer.It is also a multiple parameter coupling process that exhibits complex spatial-temporal characteristics.Therefore,the mechanism of the surface tension gradient-driven convection becomes a hotspot in microgravity fluid physics.It also has many important applications,such as in space fluid and energy management.In this paper,recent experimental and numerical results on the transition of surface tension gradient-driven convection are reviewed,especially the nonlinear analysis on the flow bifurcations to chaos.There are several numerical methods to obtain the corresponding bifurcation diagrams.One is to integrate the model forward in time starting from different parameters and initial values,and others are to calculate the asymptotic flow states and bifurcation points directly.The direct numerical simulation method and time series analysis are widely used,but searching for bifurcation points from a large number of data is burdensome.Bifurcation points can be computed directly with the numerical bifurcation method,but such calculations are more difficult to implement than the direct numerical method.
作者 郭子漪 李凯 康琦 段俐 胡文瑞 GUO Ziyi;LI Kai;KANG Qi;DUAN Li;HU Wenrui(National Microgravity Laboratory,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China;School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《力学进展》 EI CSCD 北大核心 2021年第1期1-28,共28页 Advances in Mechanics
基金 国家自然科学基金资助项目(11972353,U1738116).
关键词 界面张力梯度驱动对流 微重力 分岔 混沌 surface gradient tension-driven convection microgravity bifurcation chaos
  • 相关文献

参考文献9

二级参考文献112

  • 1石万元,李友荣,曾丹苓,今石宣之.环形浅液层内热流体波的可视化实验研究[J].工程热物理学报,2007,28(z2):101-104. 被引量:3
  • 2彭岚,李友荣,吴双应,李明伟,曾丹苓.环形浅池内硅熔体中的热流体波[J].计算力学学报,2006,23(3):295-300. 被引量:1
  • 3唐泽眉,胡文瑞.液池中大Pr数流体的热流体波[J].中国科学(G辑),2007,37(2):250-258. 被引量:3
  • 4HU W R, IMAISHI N. Thermocapillary flow in an annular liquid layer painted on a moving fiber[J]. Int J Heat Mass Transfer,2000,43 :4457-4466.
  • 5SHIH T, MEGARIDIS C M. Thermocapillary flow effects on convective droplet evaporation[J]. Int J Heat Mass Transfer ,1996,39 : 247-257.
  • 6CHANG C E, WILCOX W R. Analysis of surface tension driven flow in floating zone melting[J]. Int J Hear Mass Transfer, 1976,19 : 355-366.
  • 7SCWABE D, SCHARMANN A, PLEISSER F, et al. Experiments on surface tension driven flow in floating zone melting [J ]. J Crystal Growth, 1978, 43:305-312.
  • 8AZAMI T, NAKAMURA S, EGUCHI M. The role of surface-tension-driven flow in the formation of a surface pattern on a Czochralski silicon melt[J]. J Crystal Growth, 2001,233 : 99-107.
  • 9LI Y R, PENG L, AKIYAMA Y, et al. Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool [J]. J Crystal Growth, 2003,259: 374-387.
  • 10LI Y R, IMAISHI N, PENG L, et al. Thermocapillary flow in a shallow molten silicon pool with Cz configuration[J]. J Crystal Growth, 2004,266: 88- 95.

共引文献12

同被引文献20

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部