期刊文献+

动量空间光谱成像技术在微纳光子学材料研究中的应用 被引量:2

Momentum-space imaging spectroscopy for the study of nanophotonic materials
原文传递
导出
摘要 纳米尺度效应使纳米材料具有独特的磁、光、热和电性能,在催化、生物医学传感器、能量存储和转换等领域得到了广泛的研究.目前常用的合成方法都是基于热辐射的体相加热过程,如传统的水热和煅烧等.与传统加热方式不同,非热辐射加热方法具有局部加热的特点.为此,本文总结了合成纳米材料的各种非辐射加热方法,包括微波加热、感应加热、焦耳加热、激光加热和电子束加热,并对各种非热辐射加热方法合成纳米材料的优缺点进行了比较和讨论.最后,展望了非辐射加热法潜在合成纳米材料的发展前景和面临的挑战. The novel phenomena in nanophotonic materials, such as the angle-dependent reflection and negative refraction effect, are closely related to the photonic dispersions EepT. EepT describes the relation between energy E and momentum p of photonic eigenmodes, and essentially determines the optical properties of materials. As EepT is defined in momentum space(k-space), the experimental method to detect the energy distribution, that is the spectrum, in a momentum-resolved manner is highly required. In this review, the momentum-space imaging spectroscopy(MSIS) system is presented, which can directly study the spectral information in momentum space. Using the MSIS system, the photonic dispersion can be captured in one shot with high energy and momentum resolution. From the experimental momentumresolved spectrum data, other key features of photonic eigenmodes, such as quality factors and polarization states, can also be extracted through the post-processing algorithm based on the coupled mode theory. In addition, the interference configurations of the MSIS system enable the measurement of coherence properties and phase information of nanophotonic materials, which is important for the study of light-matter interaction and beam shaping with nanostructures. The MSIS system can give the comprehensive information of nanophotonic materials, and is greatly useful for the study of novel photonic phenomena and the development of nanophotonic technologies.
作者 张译文 赵茂雄 王佳俊 刘文哲 王博 胡松婷 卢国鹏 陈昂 崔靖 章炜毅 許家瑋 刘晓晗 石磊 殷海玮 资剑 Yiwen Zhang;Maoxiong Zhao;Jiajun Wang;Wenzhe Liu;Bo Wang;Songting Hu;Guopeng Lu;Ang Chen;Jing Cui;Weiyi Zhang;Chia Wei Hsu;Xiaohan Liu;Lei Shi;Haiwei Yin;Jian Zi(Department of Physics,Key Laboratory of Micro-and Nano-Photonic Structures(Ministry of Education),and State Key Laboratory of Surface Physics,Fudan University,Shanghai 200433,China;Shanghai Engineering Research Center of Optical Metrology for Nano-fabrication(SERCOM),Shanghai 200433,China;Ming Hsieh Department of Electrical Engineering,University of Southern California,Los Angeles,CA 90089,USA;Collaborative Innovation Center of Advanced Microstructures,Fudan University,Shanghai 200433,China)
出处 《Science Bulletin》 SCIE EI CSCD 2021年第8期824-838,M0004,共16页 科学通报(英文版)
基金 supported by the National Key Basic Research Program of China(2016YFA0301103,2016YFA0302000 and 2018YFA0306201) the National Natural Science Foundation of China(11774063,11727811,and 91963212) supported by the Science and Technology Commission of Shanghai Municipality(19XD1434600,2019SHZDZX01 and 19DZ2253000)。
关键词 纳米材料 纳米尺度效应 电子束加热 加热方法 光子学材料 辐射加热 局部加热 能量存储 Momentum space imaging Nanophotonic material Photonic dispersion Photonic eigenmode Quality factor Polarization state
  • 相关文献

参考文献4

二级参考文献19

共引文献53

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部