期刊文献+

性能数据驱动的机械产品关键设计参数识别方法 被引量:10

Identification of Critical Design Parameter for Mechanical Products Based on Performance Data
原文传递
导出
摘要 利用运行数据识别产品设计缺陷或薄弱环节是产品开发和更新换代的主要模式,也是保证产品服役性能稳定的重要途径。提出了一种性能数据驱动的产品关键设计参数(薄弱环节)识别方法。首先,利用极限学习机算法划分运行工况,提出了基于核主成分分析和高斯混合模型的多工况性能退化评估方法,消除了工况变化对性能退化评估的影响,得到性能退化严重的关键功能模块;其次,对性能监测数据进行聚类分析,识别出与模块性能退化密切相关的关键性能监测参数;最后,建立了"性能监测参数—性能参数—设计参数"三者之间的关联关系,识别出导致性能严重退化的关键设计参数。以某大吨位履带起重机作业机构为例,验证了方法的有效性。 Identifying the weaknesses or defects of the current design based on the operating data is the main mode of product development. It is also an important way to ensure the stable performance of products. An approach of critical design parameter identification based on performance data is proposed. Firstly, the operating conditions are identified by the algorithm of extreme learning machine. A performance degradation assessment method based on kernel principal component analysis and gaussian mixture model is conducted, which eliminates the influence of operating conditions on performance degradation assessment and obtains key functional modules with severe performance degradation. Secondly, cluster analysis is carried out on operation monitoring data to identify critical monitoring parameters closely related to module performance degradation. Finally, the correlation between "performance monitoring parameter-product performance parameter-design parameter" is established to identify the critical design parameters. The effectiveness of the proposed method is verified by a case study of a large tonnage crawler crane.
作者 褚学宁 陈汉斯 马红占 CHU Xuening;CHEN Hansi;MA Hongzhan(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2021年第3期185-196,共12页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(51875345,51475290)。
关键词 性能监测数据 性能退化评估 关键设计参数识别 高斯混合模型 履带起重机 performance monitoring data performance degradation assessment critical design parameter identification Gaussian mixture model crawler crane
  • 相关文献

参考文献2

二级参考文献26

  • 1胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 2LI Xueiun,BIN Guangfu,CHU Fulei.DIAGNOSTICS OF FATIGUE CRACK IN ULTERIOR PLACES OF LARGER-SCALE OVERLOADED SUPPORTING SHAFT BASED ON TIME SERIES AND NEURAL NETWORKS[J].Chinese Journal of Mechanical Engineering,2007,20(3):79-82. 被引量:2
  • 3PHILIPPE W, LIONEL J. Complex system reliability modeling with dynamic object oriented Bayesian networks(DOOBN)[J]. Reliability Engineering and System Safety, 2006, 91: 149-162.
  • 4BERNARDETE R. Support vector machines for quality monitoring in a plastic injection molding process[J]. IEEE Transactions on Systems, Man., and Cybernetics-part C: Applications and Reviews, 2005, 35(3): 401-410.
  • 5ERTUNC H M, LOPARP K A, OCAK H. Toole wear condition monitoring in drilling operations using hidden Markov models(HMM)[J]. International Journal of Machine Tools & Manufacture, 2001, 41:1 363-1 384.
  • 6ROBERTSON A N, FARRAR C R, SOHN H. Singularity detection for structural health monitoring using holder exponents[J]. Mechanical Systems and Signal Processing, 2003, 17(6): 1 163-1 184.
  • 7SOHN H, FARRAR C R. Damage diagnosis using time series analysis of vibration signals[J]. Smart Materials and Structures, 2001(10): 1-6.
  • 8THIERRY D. A neural network classifier based on Dempster-Shafer theory[J]. IEEE Transactions on Systems, Man. and Cybernetics, 2000, 30(2): 131-150.
  • 9BODNER S R, PARTOM I, PARTOM Y. Uniaxial cyclic loading ofelastic-viscoplastic materials[J]. ASME J. Appl. Mech., 1979, 46. 805-810.
  • 10HOWARD I, JIA S, WANG J. The dynamic modeling of a spur gear in mesh including friction and a crack[J]. Mechanical Systems and Signal Processing, 2001, 15. 831-838.

共引文献16

同被引文献215

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部