摘要
为提高硬岩破碎能力,提出了一种高压泡沫涨裂装置。该装置利用高速活塞冲压泡沫,在岩石钻孔内施加载荷,实现岩石涨裂破碎。基于流体力学和能量守恒理论,建立高压泡沫涨裂装置动力学模型,分析装置动力参数与结构参数的关系,探究涨裂装置结构参数对涨裂压力的影响,揭示活塞冲压过程能量演化规律;构建高压泡沫涨裂试验系统,验证系统可行性和理论分析的合理性。结果表明:涨裂活塞经过200mm行程后,装置最大涨裂压力可达80MPa;活塞杆直径、泄油口面积对涨裂压力的影响显著;缓冲活塞直径对装置涨裂压力的影响微弱,对缓冲速度影响较为显著,当缓冲活塞直径从70 mm增到90 mm,缓冲后速度从4.8 m/s下降到1.5 m/s,缓冲效果提升3.2倍;试验实现了岩样的有效破碎,涨裂压力试验值的变化趋势与理论计算结果的吻合度较好。上述研究为硬岩破碎装置性能的改善提供了理论基础,同时为其他高压介质涨裂装置的研究提供了理论借鉴。
To improve the fracturing effect of hard rock, a high pressure foam fracturing device is proposed. The device uses high-speed piston to impact foam, applying loads in the borehole to achieve the fracturing of hard rock. Based on the theory of fluid mechanics and conservation of energy, the dynamic model of the device is established. The relationship between the dynamic parameters and structural parameters of the device is analyzed. The influence of the device structural parameters on the fracturing pressure is explored. Besides, the energy evolution rule of the piston’s stamping process is revealed. The high pressure foam fracturing test system is built to verify the feasibility of the system and the rationality of theoretical analysis. The results show that after 200 mm displacement, the fracturing pressure of the fracturing piston can reach 80 MPa. The diameter of the piston rod and the area of the oil drain port have a striking influence on the fracturing pressure. The influence of the diameter of the buffer piston on the fracturing pressure is weak, while its influence on the retarding speed is more significant. When the diameter of the buffer piston increases from 70 mm to 90 mm, the buffering speed decreased from 4.8 m/s to 1.5 m/s, and the buffering effect increased by 3.2 times. Through experiment, the effective breaking of rock sample is realized. The experimental results of the fracturing pressure agree well with the theoretical calculation. The research provides a theoretical basis for the improvement of hard rock fracturing performance, also provides a theoretical reference for the research of fracturing devices with other high-pressure medium.
作者
刘送永
李志强
谢奇志
LIU Songyong;LI Zhiqiang;XIE Qizhi(School of Mechatronic Engineering,China University of Mining and Technology,Xuzhou 221116)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2021年第3期197-206,共10页
Journal of Mechanical Engineering
基金
国家自然科学基金(51975570)
江苏高校优势学科建设工程资助项目。
关键词
硬岩破碎
高压泡沫涨裂
动力学模型
涨裂压力
hard rock fragmentation
high pressure foam fracturing
dynamic model
fracturing pressure