期刊文献+

浅析钢管热处理炉的热工影响因素

Analysis of the Influencing Factors of Thermal of Steel Tube Heat Treatment Furnace
下载PDF
导出
摘要 论文从定性方面和数值模拟方面分析了热处理炉热工工况的影响因素,以在保证钢管加热质量的前提下,实现提高产量的主要目标,同时,降低燃耗、减少氧化烧损。论文对生产节拍和炉温制度进行了离线优化计算,求得的优化加热制度为在线控制提供了依据。对原有热处理炉加热制度进行了优化,达到提高钢管加热质量和提高热处理炉生产率的目的。 This paper analyzes the influence factors of thermal conditions of heat treatment furnace from qualitative and numerical simulation aspects,so as to achieve the main goal of improving the production while ensuring the heating quality of the steel tube,and at the same time,reduce the fuel consumption and reduce the oxidation loss.The paper carries out an offline optimization calculation on the production cycle and furnace temperature system,and the obtained optimized heating system provides a basis for online control.The heating system of the original heat treatment furnace was optimized to achieve the purpose of improving the heating quality of steel pipes and increasing the productivity of the heat treatment furnace.
作者 袁绪尧 王海杰 李振 YUAN Xu-yao;WANG Hai-jie;LI Zhen(Yantai Lubao Steel Pipe Co.,Ltd.,Yantai 264000,China)
出处 《中小企业管理与科技》 2021年第15期191-192,共2页 Management & Technology of SME
关键词 数值模拟 加热速度 热工工况 生产节拍 炉温制度 numerical simulation heating rate thermal conditions production cycle furnace temperature system
  • 相关文献

参考文献2

二级参考文献41

  • 1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
  • 8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
  • 9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.
  • 10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989.

共引文献218

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部