期刊文献+

关于图的广义距离能量的界

On the Bounds for the Generalized Distance Energy of Graphs
原文传递
导出
摘要 对于简单连通图G,广义距离矩阵Dα(G)是Tr(G)和D(G)的凸组合,即对于0≤α≤1,Dα(G)=αTr(G)+(1-α)D(G).设■是Dα(G)的特征值,则图G的广义距离能量定义为■,其中W(G)是G的Wiener指数.本文首先讨论了当α∈(0,1/2]时,广义距离能量E^(Dα)(G)的一些上下界,研究了当α∈[1/2,1)时的情形,从而扩大了已知界中α的范围.其次,在保留距离能量主要特征情况下,得到广义距离能量E^(Dα)(G)的一些上下界.最后,获得完全k-部图的广义距离能量. For simple connected graph G,the generalized distance matrix Da(G)is a convex combination of Tr(G)and D(G),and is defined as Dα(G)=αTr(G)+(1-α)D(G),for 0≤α≤1.If■are the eigenvalues of Dα(G).We define the generalized distance energy of G as■,where W(G)is the Wiener index of G.In this paper,we first discuss some upper and lower bounds on the generalized distance energy E^(Dα)(G)of graphs forα∈(0,1/2],and study the case whenα∈[1/2,1),so as to expand the range ofαin known bounds.Secondly,under the condition of preserving the main characteristics of distance energy,we obtain some upper and lower bounds on the generalized distance energy E^(Dα)(G)of graphs.Finally,we get the generalized distance energy of complete k-partite graphs.
作者 郭程笑 梅银珍 GUO Cheng xiao;MEI Yin-zhen(School of Science,North University of China,Taiyuan 030051,China)
机构地区 中北大学理学院
出处 《数学的实践与认识》 2021年第8期245-252,共8页 Mathematics in Practice and Theory
基金 山西省自然科学基金(201601D202003) 中北大学研究生科技立项(20191647)。
关键词 距离拉普拉斯矩阵 距离无符号拉普拉斯矩阵 广义距离矩阵 能量 distance Laplacian matrix distance signless Laplacian matrix generalized distance matrix energy
  • 相关文献

参考文献1

二级参考文献16

  • 1BONDY J,MURTY U S R. Graph Theory with Applications[M]. New York: North-holland,1976.
  • 2CVETOVI D,DOOB M,SACHS H. Spectra of Graphs[M]. New York: Academic Press,1980.
  • 3HARARY F,SCHWENK A J. Which graphs have integral spectral [C]. Berlin: Springer,1974: 45-51.
  • 4BALIńSKA K T,CVETKOVI D,RADOSAVLJEVI Z,et al. A survey on integral graphs[J]. Univ Beograd Pull Elektrotehn Fak Ser Mat,2002,13: 42-65.
  • 5WANG Li-gong,LI Xue-liang,HOEDE C. Integral complete r-partite graphs[J]. Discrete Math,2004,283: 231-241.
  • 6WANG Li-gong,LIU Xiao-dong. Integral complete multipartite graphs[J]. Discrete Math,2008,308: 3860- 3870.
  • 7HíC P,POKORNY M. Integral complete 4-partite graphs[J]. Discrete Math,2008,308: 3704-3705.
  • 8HíC P,POKORNY M, ERNEK P. New sufficient conditions for integral complete 3-partite graphs[J]. Appl Anal Discrete Math,2008,2: 276-284.
  • 9WANG Li-gong,WANG Qi. Integral complete multipartite graphs K_(a_1n_1 ,···,a_sn_s) with s = 5,6[J]. Discrete Math,2009,308: 1-7.
  • 10GRONE R,MERRIS R. The Laplacian spectrum of a graph[J]. SIAM J Discrete Math,1994,7: 221-229.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部