摘要
利用矩阵半张量积方法研究弱双四元数矩阵方程AX=B的解,通过提出一种新的实向量表示,将弱双四元数矩阵方程问题转化为相应实矩阵方程问题.由此得到弱双四元数方程AX=B的最小二乘解、相容条件及通解表达式,并给出相应的算法,通过数值实验检验了算法的有效性.
In this paper,the solution of reduced biquaternion matrix equation AX=Bis studied by using the method of semi tensor product of matrices.By proposing a new real vector representation of reduced biquaternion matrix,the problem of reduced biquaternion matrix equation is transformed into the corresponding real matrix equation.The least square solution,compatibility condition and general solution expression of reduced biquaternion matrix equation AX=B are obtained,and the corresponding algorithm is given.The effectiveness of the algorithm is verified by numerical experiments.
作者
丁文旭
李莹
王栋
赵建立
DING Wen-xu;LI Ying;WANG Dong;ZHAO Jian-li(Research Center of Semi-tensor Product of Matrices:Theory and Applications,College of Mathematical Sciences,Liaocheng University,Liaocheng 252000,China)
出处
《数学的实践与认识》
2021年第8期253-259,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(11801249)。
关键词
弱双四元数
矩阵半张量积
最小二乘解
实向量表示
reduced biquaternion
semi-tensor product of matrix
least squares solution
real vector representation