期刊文献+

关于四元非齐次幂和的除数问题

On the Sums of Divisor Problem with Quaternary Non-homogeneous Powers
原文传递
导出
摘要 设d(n)为Dirichlet除数函数,定义Sk(x)=∑1≤n2,n2,n3≤x^(1/2) 1≤n4≤x^(1/k)d(n2^(2)+n2^(2)+n3^(2)+n4^(k)),3≤k∈N.探讨了非齐次除数幂和Sk(x)的渐进性质,并建立了当k≥3时Sk(x)的渐近公式进一步深化了前人的结果. Let d(n) denote the Dirichlet divisor function.Define Sk(x)=∑1≤n2,n2,n3≤x^(1/2) 1≤n4≤x^(1/k)d(n2^(2)+n2^(2)+n3^(2)+n4^(k)),3≤k∈N.In this paper,we discuss the asymptotic property of the sums of non-homogeneous powers Sk(x),and establish an asymptotic formula of Sk(x) for k≥3,which deepens the result of previous authors.
作者 李金蒋 LI Jin-jiang(School of Science,China University of Mining and Technology(Beijing),Beijing 100083,China)
出处 《数学的实践与认识》 2021年第8期321-328,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11901566,11971476,12071238) 中央高校基本科研业务费专项基金(2019QS02)。
关键词 除数函数 圆法 非齐次幂和 渐近公式 Divisor function circle method sums of non-homogeneous powers asymptotic formula
  • 相关文献

参考文献1

二级参考文献6

  • 1Calder6n, C. and De Velasco, M.J., On divisors of a quadratic form, Bol. Soc. Bras. Mat., 2000, 31(1): 81-91.
  • 2Guo, R.T. and Zhai, W.G., Some problems about the ternary quadratic form m + rn22 + m], Acta Arith., 2012, 156(2): 101-121.
  • 3Srinivasan, B.R., The lattice point problem of many-dimensional hyperboloids, II, Acta Arith., 1963, 8: 173- 204.
  • 4Vaughan, R.C., The Hardy-Littlewood Method, 2nd Edition, Cambridge: Cambridge Univ. Press, 1997.
  • 5Wooley, T.D., Vinogradov's mean value theorem via efficient congruencing, Ann. of Math. (2), 2012, 175(3): 1575-1627.
  • 6Zhao, L.L., The sum of divisors of a quadratic form, Acta Arith., 2014, 163(2): 161-177.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部