期刊文献+

Deposition pattern of drying droplets 被引量:1

原文传递
导出
摘要 The drying of liquid droplets is a common daily life phenomenon that has long held a special interest in scientific research.When the droplet includes nonvolatile solutes,the evaporation of the solvent induces rich deposition patterns of solutes on the substrate.Understanding the formation mechanism of these patterns has important ramifications for technical applications,ranging from coating to inkjet printing to disease detection.This topical review addresses the development of physical understanding of tailoring the specific ring-like deposition patterns of drying droplets.We start with a brief introduction of the experimental techniques that are developed to control these patterns of sessile droplets.We then summarize the development of the corresponding theory.Particular attention herein is focused on advances and issues related to applying the Onsager variational principle(OVP)theory to the study of the deposition patterns of drying droplets.The main obstacle to conventional theory is the requirement of complex numerical solutions,but fortunately there has been recent groundbreaking progress due to the OVP theory.The advantage of the OVP theory is that it can be used as an approximation tool to reduce the high-order conventional hydrodynamic equations to first-order evolution equations,facilitating the analysis of soft matter dynamic problems.As such,OVP theory is now well poised to become a theory of choice for predicting deposition patterns of drying droplets.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第4期130-141,共12页 理论物理通讯(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.21822302) the joint NSFCISF Research Program,China(Grant No.21961142020) the Fundamental Research Funds for the Central Universities,China。
  • 相关文献

参考文献1

二级参考文献11

  • 1Onsager L 1931 Phys. Rev. 37405.
  • 2Onsager L 1931 Phys. Rev. 38 2265.
  • 3Doi M 2012 Non-Equilibrium Soft Matter Physics, ed. Komura Sand Ohta T (Singapore: World Scientific) pp. 1-35.
  • 4Doi M 2013 Soft Matter Physics (Oxford: Oxford University Press).
  • 5Onuki A 2002 Phase Transition Dynamics (Cambridge: Cambridge University Press).
  • 6Doi M 2009J. Phys. Soc.Jpn. 78 05200 I.
  • 7de Gennes P G and ProstJ 1995 The Physics of Liquid Crystals (Ox?ford: Oxford University Press).
  • 8HappelJ and Brenner H 1963 Low Reynolds Number Hydrodynamics (Dordrecht: Kluwer Academic Publishers).
  • 9Landau L D and Lifshitz E M 1982 Mechanics (Oxford: Butterworth?Heinemann).
  • 10Yamaue T and Doi M 2005J. Chem. Phys. 122084703.

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部