摘要
以多模式资源受限项目调度问题(Multi-mode Resource Constrained Project Scheduling Problem,MRCPSP)为背景,针对蚁群算法收敛速度和解的多样性之间的平衡问题,提出一种改进的自适应混合蚁群算法。该算法中参数的取值范围和变化幅度能够随算法的运行同步自适应调整,蚂蚁在取值区间内随机取参形成混合蚁群;在算法中引入先驱侦查蚁、带有排名因子的精英蚁群奖励机制和信息素上下限以优化信息素的更新策略。同时,对于MRCPSP问题中的工期不确定问题,基于模糊理论,利用该算法解出项目工期的估计值和模糊区间加以解决。最后,仿真结果表明,该算法与其他启发式项目调度优化算法相比,能够提高收敛速度和解的质量,较好地解决MRCPSP问题,因此有着较高的实际应用价值。
Based on the background of Multi-mode Resource Constrained Project Scheduling Problem(MRCPSP),an adaptive hybrid ant colony algorithm is proposed to solve the balance problem between the convergence speed of ant colony algorithm and restraining the possibility of falling into the local optimum.The range of parameters can be adaptively adjusted synchronously with the operation of the algorithm and ants can obtain random parameter values in the parameter value range,forming a hybrid ant colony.The algorithm introduces the pioneer scout ant,reward mechanism of elite ant colony with ranking factor and upper and lower pheromone limits to optimize the pheromone update strategy.At the same time,the time uncertainty problem in MRCPSP can be solved by using this algorithm based on fuzzy theory.Finally,the simulation results show that,compared with other heuristic project scheduling optimization algorithms,this algorithm can improve the global search ability and the quality of solution,and better solve the MRCPSP problem,so it has higher practical application value.
作者
闫森
王玉玫
YAN Sen;WANG Yu-mei(Third Department of System, North China Institute of Computing Technology, Beijing 100083, China;General Department, North China Institute of Computing Technology, Beijing 100083, China)
出处
《计算机与现代化》
2021年第5期38-43,共6页
Computer and Modernization
基金
国防科技创新特区H863计划项目(H863-01-zt-002-020)。
关键词
自适应参数
混合蚁群
排名因子
模糊理论
adaptive parameter
hybrid ant colony
ranking factor
fuzzy theory