期刊文献+

分离变量法和函数逼近法在偏微分方程的解法分析

Analysis of the Methods of Separating Variables and Function Approxi⁃mation in Partial Differential Equations
下载PDF
导出
摘要 以经典的Pennes传热方程为研究对象,通过有限区域傅里叶变换法和分离变量法将方程转化为常微分方程,然后利用分数阶导数的Laplace变换和逆变换求解进行了求解;结果表明,有限Fourier变换、Fourier-Laplace变换和分离变量法等方法能够求解传热方程;而函数逼近Adomian分解法可以求出方程的近似解。 Fractional differential equations have very important applications in many fields.In this paper,the classic Pennes heat transfer equation is used as the research object.The equation is transformed into ordinary differential equations through the limited area Fourier transform method and the separation variable method,and then the fractional derivative Laplace transform and inverse transform are used to solve the problem.The results showed that:methods such as finite Fourier transform,Fourier-Laplace transform and variable separation method can solve the heat transfer equation.The function approximation Adomian decomposition method can find the approximate solution of the equation.
作者 杨冬成 YANG Dongcheng(Jiangsu United Vocational and Technical College,Yancheng Jiangsu 224001,China)
出处 《保山学院学报》 2021年第2期74-79,共6页 JOURNAL OF BAOSHAN UNIVERSITY
关键词 分离变量法 函数逼近法 传热方程 求解 Variable Separation Method Function Approximation Method Heat Transfer Equation Solution
  • 相关文献

参考文献3

二级参考文献8

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部