期刊文献+

基于区块链技术的可信分布式计算研究

Research on Trusted Distributed Computing Based on Blockchain Technology
下载PDF
导出
摘要 随着互联网技术的高度发展,数字社会已然成型,为满足海量数据的多样化处理需求,人们在分布式计算技术的基础上开发出云计算、雾计算、边缘计算等多种分布式并行计算解决方案。但目前各类计算平台框架需要部署大规模计算集群,并采用中心化集成化管理方式,存在部署运维成本高、数据安全性和隐私性风险大等问题。为解决上述问题,将区块链技术和Map-Reduce框架结合起来,研究提出一个计算环境可信、计算过程可追溯、计算结果安全隐私的可信分布式计算解决方案。 At present,all kinds of distributed computing frameworks need to deploy large-scale computing clusters and adopt centralized and integrat⁃ed management mode,which has the problems of high deployment cost,high data security and privacy risks.In order to solve the above problems,the author combines blockchain technology and Map-Reduce framework,and proposes a trusted distributed computing solution with trusted computing environment,traceable computing process and secure and private computing results.
作者 许亮 XU Liang(College of Computer Science,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2021年第11期43-47,共5页 Modern Computer
关键词 分布式计算 区块链 可信 Distributed Computing Blockchain Trusted
  • 相关文献

参考文献2

二级参考文献40

  • 1ZICARI R V. Big data: challenges and opportunities [EB/OL]. [2016-01-08]. http://gotocon.com/dl/goto-aar-2012/slides/RobertoV.Zicari_BigDataChallengesAndOpportunities.pdf.
  • 2ZHAO Q, XIONG C, ZHAO X, et al. A data placement strategy for data-intensive scientific workflows in cloud [C]// Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Washington, DC: IEEE Computer Society, 2015: 928-934.
  • 3YU B, PAN J. Location-aware associated data placement for geo-distributed data-intensive applications [C]// Proceedings of the 2015 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2015:603-611.
  • 4JALAPARTI V, BODIK P, MENACHE I, et al. Network-aware scheduling for data-parallel jobs: plan when you can [C]// SIGCOMM '15: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. New York: ACM, 2015: 407-420.
  • 5CHEN W, PAIK I, LI Z. Topology-aware optimal data placement algorithm for network traffic optimization [J]. IEEE Transactions on Computers, 2016,65(8):2603-2617.
  • 6WANG J, QIU M, GUO B, et al. Phase-reconfigurable shuffle optimization for Hadoop MapReduce [J]. IEEE Transactions on Cloud Computing, 2015(99):1.
  • 7YU W, WANG Y, QUE X, et al. Virtual shuffling for efficient data movement in MapReduce [J]. IEEE Transactions on Computers, 2015, 64(2):556-568.
  • 8BUYYA R. High Performance Cluster Computing: Architectures and Systems [M]. Upper Saddle River, NJ: Prentice Hall, 1999, 1: 823.
  • 9XIE Q, LU Y. Priority algorithm for near-data scheduling: throughput and heavy-traffic optimality [C]// Proceedings of the 2015 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2015: 963-972.
  • 10LE Y, LIU J, ERGUN F, et al. Online load balancing for MapReduce with skewed data input [C]// Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway, NJ: IEEE, 2014: 2004-2012.

共引文献400

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部