期刊文献+

基于Kinect的手势交互课件应用系统的设计 被引量:1

Design of Application System Based on KinectGesture Interactive Courseware
下载PDF
导出
摘要 针对增强现实(Augmented Reality,AR)可视化交互教学系统中,需要对课件进行手势控制的需求,本文完成了基于Kinect的手势交互课件应用系统的设计.首先通过Kinect采集深度图像,然后根据Kinect骨骼跟踪技术完成手势识别,并最终依据手势识别结果实现对课件播放的控制.实验结果表明,本方法实现课件播控能提高播控的准确率和灵活性,从而为基于AR交互课件的播控奠定基础. In order to meet the needs of gesture control in the visual interactive teaching system of augmented reality(AR),the design of gesture interactive courseware application system based on Kinect was completed in this paper.Firstly,the depth images were collected by Kinect,and then gesture recognition was completed with Kinect bone tracking technology.Finally,the control of courseware playing was realized according to the result of gesture recognition.The experimental results showed that the accuracy and flexibility of courseware broadcast control were improved,which could lay the foundation for broadcast control based on AR interactive courseware.
作者 马少斌 张成文 梁虎金 MA Shao-bin;ZHANG Cheng-wen;LIANG Hu-jin(School of Digital Media,Lanzhou University of Arts and Science,Lanzhou 730000,China;VR technology R&D and Promotion Center,Lanzhou University of Arts and Science,Lanzhou 730000,China)
出处 《兰州文理学院学报(自然科学版)》 2021年第3期77-81,共5页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 甘肃省产业支撑引导项目(2019c-09) 甘肃省高等学校科研项目(2018A-138)。
关键词 增强现实 可视化交互教学 KINECT 骨骼跟踪 手势识别 augmented reality visual interactive teaching Kinect bone tracking gesture recognition
  • 相关文献

参考文献8

二级参考文献51

  • 1罗元,李玲,张百胜,杨红梅.基于CamShift和Kalman滤波混合的视频手势跟踪算法[J].计算机应用研究,2009,26(3):1163-1165. 被引量:8
  • 2金观昌,孟利波,陈俊达,马少鹏,张军.数字散斑相关技术进展及应用[J].实验力学,2006,21(6):689-702. 被引量:88
  • 3HAYKIN S. Neural Networks: A comprehensive foundation[M]. 2nd ed. New York: Prentice-Hall, 1999.
  • 4BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1 -127.
  • 5HINTON G E, MCCLELLAND J L, RUMELHART D E. Distributed Representations[M]. Cambridge: MIT Press, 1986.
  • 6HINTON G E, OSINDERO S. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18:1527 - 1554.
  • 7HUBEL D, WIESEL T. Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex[J]. Journal of Physiology, 1962, 160 : 106 - 154.
  • 8LECUNY, KAVUKCUOGLUK, FARABET C. Convolutional networks and applications in vision[Z]. International Symposium on Circuits and Systems, Paris, 2010.
  • 9LASERSON J. From neural networks to deep learning: zeroing in on the human brain [J]. XRDS, 2011, 18(1) :29 -34.
  • 10LECUNY, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of IEEE, 1998, 86(11): 2278-2324.

共引文献94

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部