期刊文献+

构建基于用户及影视知识图谱的IPTV智能推荐算法——以河北广电为例 被引量:1

Construction of IPTV Intelligent Recommendation Algorithm Based on User and Film Knowledge Graph:Take Hebei Radio and Television Station as an Example
下载PDF
导出
摘要 IPTV即交互式网络电视。当前,IPTV已成为体量最大的新媒体电视平台以及广播电视运营的主要形态。大数据技术通过用户数据管理和用户行为分析,使得IPTV精准匹配海量内容和用户需求成为可能。而在业务量迅猛增长的同时,IPTV运营平台凸显出对大数据统一管理和运营能力的不足。基于此,以河北广播电视台(简称河北广电)为例,研究其在IPTV运维中建立的基于用户及影视知识图谱的IPTV智能推荐算法。河北广电利用大数据模型算法赋能编排运营,实现用户增长和运营增收,其经验值得推广。 IPTV is Internet protocol television.At present,IPTV has become the largest new media television platform and the main form of radio and television operation.Big data technology makes it possible for IPTV to accurately match massive content and user needs through user data management and user behavior analysis.With the rapid growth of business volume,IPTV operation platform highlights the lack of unified management and operation ability of big data.Based on this,taking Hebei radio and television station as an example,this paper studies the IPTV intelligent recommendation algorithm based on user and film knowledge map established in IPTV operation and maintenance.Hebei radio and television use big data model algorithm to enable the scheduling of operations,to achieve user growth and operating income,its experience is worth promoting.
作者 陈挚 余疆 CHEN Zhi;YU Jiang(Propaganda Department of the Party Committee,Sichuan International Studies University,ChongQing,400031,China;AsiaInfo Technologies Limited.,BeiJing 100086,China)
出处 《电视技术》 2021年第4期78-84,共7页 Video Engineering
关键词 IPTV 大数据 知识图谱 IPTV big data knowledge graph
  • 相关文献

参考文献4

二级参考文献47

  • 1刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 2王小川.过多关注下一个风口,恐遇陷阱[EB/OL].[2014-12-04].http://chuansongme.com/n/966472.
  • 3Preece A D, Hui K Y, Gray W A, et al. Designing for Scalability in a Knowledge Fusion System [J]. Knowledge Based Systems, 2001 (3 -4): 173-179.
  • 4Preece A D, Hui K Y, Gray W A, et al. KRAFT: An Agent Architecture for Knowledge Fusion [J]. International Journal of Cooperative Information System, 2001 ( 1 -2) : 17l - t95.
  • 5Preece A D, Hui K Y, Gray W A, et al. The KRAFT Architecture for Knowledge Fusion and Transformation [ J ]. Knowledge Based System, 2000 (2-3): ]13-]20.
  • 6Brain J G, Dickson h Knowledge Fusion [A]. In: Proceedings. of the ?th Annual Workshop on Conceptual Structures: Theory and Implementation [ C]. Springer-Verlag Published, 1992: 158- 167.
  • 7Gray A, Marti P. Towards a Scalable Architecture for Knowledge Fusion [A]. In: Proceedings. of International Workshop on infrastructure for Scalable Multi-Agent System [ C]. Barcelona, 2000:229 -292.
  • 8Hiransoog C, Malcolm C A. Multi-Sensor/Knowledge Fusion [A]. In: Proc. of the 1999 Int. Conf. on Multisensory Fusion and Integration for Intelligent System [ C]. Taipei, 1999= 117- 122.
  • 9MichaelS,RebeccaS,etal.大数据在现实世界中的应用分析报告[DB/OL].http://www31.ibm.com/ibm/cn/bda/downloads/analysis--bigdata--real--app.pdf.
  • 10Hugh J. Watson, Tutorial: Big Data Analytics: Concepts, Technologies, and Applications [J]. Communications of the Association for Information Systems, 2014 (34) : 65.

共引文献1062

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部