期刊文献+

求最小树的Kruskal算法中无圈判断的进一步思考

下载PDF
导出
摘要 在实际应用中,我们常碰到实现最小连接的问题,这就归结到最小树问题.最小树问题在运筹学、图论、数据结构等课程都有涉及.解决最小树问题的算法有Kruskal算法和Prim算法等.Kruskal算法的思想是在不构成圈的前提下尽可能选权最小的边.其中考察边和已选的边集是否构成圈是影响算法复杂性的关键一步.本文先介绍实现无圈判断的标号方法,分析其本质需求,进而引入根树方法,并给出进一步改进的思路.本文从运筹学教学的角度阐述教学内容,有意识地引导学生进行深入思考,提升学生进行自主学习的意识和能力.
出处 《数学学习与研究》 2021年第13期151-153,共3页
基金 山东大学(威海)重点教改项目《科研反哺教学的研究与实践》:A201805 山东大学(威海)教研项目《经管类探索性数学实验案例教学研究》:B201816。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部