摘要
基于人类蛋白质相互作用网络,该文采纳拓扑局部相似度去实现肝癌疾病基因的预测.交叉检验测试结果表明:有22%~29%的目标基因在候选基因中排名前5%,且预测精度均能达到0.7以上.归因于低的计算复杂度和相对高的预测精度,这类疾病基因预测方法可为发现和鉴定疾病基因提供有力的线索.
Based on the human protein-protein interaction network,we adopt the local topological similarity in network to predict the hepatocellular-carcinoma(HCC)-related genes.The cross validation showed that the AUC of every similarity index can exceed 0.7,and 22%to 29%known disease genes are at top 5%.Due to both low computing complexity and relatively high prediction accuracy,they might be helpful for disease-related genes discover and identification.
作者
胡静波
项炬
胡涛
胡柯
HU Jing-bo;XIANG Ju;HU Tao;HU Ke(Department of Physics,Xiangtan University,Xiangtan 411105,China;Department of Basic Medical Sciences&Academician Workstation,Changsha Medical University,Changsha 410219,China;School of Electronic Information Engineering,Qilu University of Technology,Jinan 250353,China)
出处
《湘潭大学学报(自然科学版)》
CAS
2021年第1期28-34,共7页
Journal of Xiangtan University(Natural Science Edition)
基金
长沙市杰出创新青年培养计划(kq2009093,kq1905045)。
关键词
局部相似性指标
肝癌疾病基因
蛋白质相互作用网络
疾病基因预测
local similarity indices
hepatic carcinoma disease gene
protein-protein interaction
disease-gene prediction