期刊文献+

AI深度学习在典型应用领域的国内研究最新进展 被引量:1

The Latest Research Progress of AI Deep Learning in Typical Application Fields in China
下载PDF
导出
摘要 深度学习被认为是可广泛应用的AI(人工智能)技术,教育、医疗、电力是我国社会民生发展的重要领域,从最新进展看,三大领域应用研究分别在医疗辅助诊断、教学评价模式及行为识别、缺陷识别及智能运维等方向较为集中,且大多数研究在模型与方法创新、实验验证方面比较活跃。利用深度学习、计算机视觉等A I技术进行目标识别、行为预测、进而实现更深层的分析,可代表当前深度学习在典型应用领域的研究趋势。 Deep learning is considered to be an AI technology that can be widely applied.Medical care,education and electric power are important fields for people's livelihood and social development in China.According to the latest progress,the applied research in the three fields is concentrated in the directions of medical assisted diagnosis,teaching evaluation mode and behavior recognition,power defect identification and intelligent operation and maintenance.Most of the researches are active in model and method innovation and experimental verification.The use of AI technologies such as deep learning and computer vision for target recognition,behavior prediction and further deeper analysis can represent the current research trend of deep learning in typical application fields.
作者 李恒 王淦 LI Heng;WANG Gan(School of Electronic Information and Artificial Intelligence,Shaanxi University of Science&Technology,Xi'an Shaanxi 710021;School of Electrical Engineering,Xi'an University of Technology,Xi'an Shaanxi 710054)
出处 《数字技术与应用》 2021年第4期216-218,共3页 Digital Technology & Application
关键词 AI 深度学习 典型应用 国内研究 教育 医学 电力 AI Deep learning Typical applications Domestic research Education medicine Electric power
  • 相关文献

参考文献15

二级参考文献267

  • 1曾照芳,安琳.人工智能技术在临床医疗诊断中的应用及发展[J].现代医学仪器与应用,2007,0(5):22-25. 被引量:8
  • 2柳长安,叶文,吴华,杨国田.融合地理位置信息的电力杆塔检测[J].华中科技大学学报(自然科学版),2013,41(S1):208-210. 被引量:12
  • 3顾小清,王炜.支持教师专业发展的课堂分析技术新探索[J].中国电化教育,2004(7):18-21. 被引量:342
  • 4HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 5BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 6VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 7LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 8TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 9SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.
  • 10TAYLOR G, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking[ C ]//Proe of IEEE Con- ferenee on Computer Vision and Pattern Recognition. 2010:631-638.

共引文献755

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部