摘要
电力能源作为一种基础性能源,在国民经济发展过程中发挥着重要作用,对电力能源需求进行科学的预测有助于促进电力能源的合理供给,保障经济的健康可持续发展。将马尔科夫理论与GM(1,1)模型相结合,构建灰色-马尔科夫组合预测模型,克服了GM(1,1)模型在预测波动较大的样本数据时拟合度差、预测精度低的理论缺陷,有效提高了模型的拟合度和预测精度。通过马鞍山市电力需求预测实例说明模型的优越性,同时有效预测了马鞍山市未来3年的电力需求量。
As a kind of basic energy,electric power plays an important role in the development of national economy,scientific prediction of power energy demand is helpful to promote the reasonable supply of electric energy and ensure the healthy and sustainable development of the economy.Combining Markov theory with GM(1,1)model to construct a gray-Markov combined forecasting model,which overcomes the poor fit and prediction of GM(1,1)model when predicting volatile sample data The theoretical defect of low precision effectively improves the model’s fit and prediction accuracy.Through the example of Ma’anshan power demand forecasting,the superiority of the model is illustrated,and the power demand of Ma’anshan City in the next three years is predicted effectively.
作者
徐新卫
谢尚金
周俊
XU Xin-wei;XIE Shang-jin;ZHOU Jun(School of Management Science and Engineering,Anhui University of Technology,Maanshan 243032,China;School of Management,Guangdong University of Science&Technology,Dongguan 523076,China)
出处
《南阳理工学院学报》
2021年第2期19-25,共7页
Journal of Nanyang Institute of Technology