期刊文献+

Encoding candlesticks as images for pattern classification using convolutional neural networks 被引量:1

下载PDF
导出
摘要 Candlestick charts display the high,low,opening,and closing prices in a specific period.Candlestick patterns emerge because human actions and reactions are patterned and continuously replicate.These patterns capture information on the candles.According to Thomas Bulkowski’s Encyclopedia of Candlestick Charts,there are 103 candlestick patterns.Traders use these patterns to determine when to enter and exit.Candlestick pattern classification approaches take the hard work out of visually identifying these patterns.To highlight its capabilities,we propose a two-steps approach to recognize candlestick patterns automatically.The first step uses the Gramian Angular Field(GAF)to encode the time series as different types of images.The second step uses the Convolutional Neural Network(CNN)with the GAF images to learn eight critical kinds of candlestick patterns.In this paper,we call the approach GAF-CNN.In the experiments,our approach can identify the eight types of candlestick patterns with 90.7%average accuracy automatically in real-world data,outperforming the LSTM model.
机构地区 Soochow University
出处 《Financial Innovation》 2020年第1期470-488,共19页 金融创新(英文)
基金 Jun-Hao Chen and Yun-Cheng Tsai are supported in part by the Ministry of Science and Technology of Taiwan under grant 108-2218-E-002-050-.
  • 相关文献

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部