摘要
随着近年来5G与人工智能的崛起,无人驾驶技术在不断突破,行人检测作为无人驾驶中的重要任务之一,是一个具有重要研究意义的课题。文中采用深度学习框架Pytorch和目标检测网络YOLO进行行人检测,分别搭建了YOLO v3、YOLO v3轻量版YOLOv3-Tiny、YOLO v3与SPP-Net融合版本YOLOv3-SPP行人检测平台,并对小型目标和大型目标识别进行了详细的测试对比。测试结果表明,YOLO v3和YOLOv3-SPP平均置信度较高;YOLOv3-Tiny实时性较高,适用于计算量小的行人识别场景。
With the rise of 5G and artificial intelligence in recent years,unmanned driving technology is constantly making breakthrough.Pedestrian detection is one of the important tasks of unmanned driving,and it is an important research topic.This project will use deep learning framework Pytorch and target detection network YOLO for pedestrian detection,YOLO v3,YOLO v3 lightweight version YOLOv3-Tiny,YOLO v3 and SPP-Net fusion version YOLOv3-SPP are establised to test and being compared in terms of small and large targets.Experiment results show that YOLO v3 and YOLO v3-SPP has higher average confidence,while YOLOv3-Tiny has a low real-time performance which suits the pedestrian recognization situation of a small amount of calculation.
作者
付友
左迅
杨凡
何张凤
曹冉
FU You;ZUO Xun;YANG Fan;HE Zhang-feng;CAO Ran(State Grid Chongqing Electric Power Company Urban Power Supply Branch,Chongqing 400030,China;Chongqing University of Technology,Chongqing 400054,China)
出处
《信息技术》
2021年第5期34-38,共5页
Information Technology
基金
重庆市基础科学与前沿技术研究专项面上项目基金资助项目(cstc2019jcyj-msxmX0233)
重庆市教育委员会科学技术研究计划(KJQN201901125)
国家电网公司科技项目资助(SGCQSQ00BGJS2000453)。
关键词
行人检测
深度学习
目标检测
卷积神经网络
pedestrian detection
deep learning
target detection
convolution neural network