期刊文献+

类石墨烯单层结构ZnO和GaN的压电特性对比研究 被引量:2

Piezoelectricity of Graphene-like Monolayer ZnO and GaN
下载PDF
导出
摘要 本研究采用基于密度泛函理论的第一性原理计算了类石墨烯单层结构ZnO(g-ZnO)和GaN(g-GaN)的力学、电学和压电性质,重点研究了施加应变后原子坐标弛豫与否的Clamped-ion和Relaxed-ion两种模式的弹性刚度系数和压电张量。结果表明单层g-ZnO和g-GaN均具有半导体属性和较好的弹性。单层g-ZnO和g-GaN的压电系数分别约为9.4和2.2 pm·V^(–1),预测这类单层材料在极薄器件中可能具有压电效应,且g-ZnO的压电性能更好。因此,类石墨烯单层ZnO有望用于压力传感器、制动器、换能器及能量收集器等纳米尺度器件。 By employing density functional theory calculations,the mechanical,electronic and piezoelectric properties of graphene-like monolayers ZnO(g-ZnO)and GaN(g-GaN)were investigated.Elastic stiffness constants and piezoelectric tensors of monolayers g-ZnO and g-GaN using their Clamped-ion and Relaxed-ion components were mainly studied.Results indicate that these two graphene-like structures are semiconductors with excellent elasticity.The piezoelectric coefficient of monolayers g-ZnO and g-GaN are about 9.4 and 2.2 pm·V^(–1),respectively,implying their piezoelectric effect in extremely thin film devices,especially the g-ZnO.The remarkable piezoelectricity of monolayer g-ZnO enables it a wide range of applications,such as mechanical stress sensors,actuators,transducer and energy harvesting devices.
作者 向晖 全慧 胡艺媛 赵炜骞 徐波 殷江 XIANG Hui;QUAN Hui;HU Yiyuan;ZHAO Weiqian;XU Bo;YIN Jiang(School of Mathematics and Physics,Hubei Polytechnic University,Huangshi 435003,China;National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China;School of Sciences,China Pharmaceutical University,Nanjing 211198,China)
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2021年第5期492-496,共5页 Journal of Inorganic Materials
基金 南京大学固体微结构物理国家重点实验室开放课题(M32016) 湖北理工学院人才引进项目(18xjz17R) 湖北省大学生创新创业训练项目(S201910920041)。
关键词 压电 弹性 电子结构 ZNO GAN 类石墨烯单层 piezoelectricity elasticity electronic structure ZnO GaN graphene-like monolayer
  • 相关文献

参考文献1

二级参考文献41

  • 1Kingon, A. I.; Srinivasan, S. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications. Nat. Mater. 2005, 4, 233-237.
  • 2Nguyen, T. D.; Deshrnukh, N.; Nagarah, J. M.; Kramer, T.; Purohit, P. K.; Berry, M. J.; McAlpine, M. C. Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 2012, 7, 587-593.
  • 3Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242-246.
  • 4Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34-39.
  • 5Lee, E.; Park, J.; Yim, M.; Kim, Y.; Yoon, G. Characteristics of piezoelectric ZnO/A1N-stacked flexible nanogenerators for energy harvesting applications. Appl. Phys. Lett. 2015, 106, 023901.
  • 6Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470-474.
  • 7Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151-155.
  • 8Nye, J. F. Physical Properties of Crystals." Their Representation by Tensors and Matrices; Clarendon Press: Oxford, UK, 1957.
  • 9Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two- dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
  • 10Duerloo, K. A. N.; Ong, M. T.; Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials, a~ Phys. Chem. Lett. 2012, 3, 2871-2876.

共引文献11

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部