期刊文献+

一种室内高动态环境的机器人定位方法 被引量:5

A Robot Localization Method in Indoor Dynamic Environment
下载PDF
导出
摘要 该文提出一种能让机器人在室内动态环境中进行长时间稳定定位的方法。该方法既能实现对高动态物体的过滤又能实现半静态物体的更新,在去除动态物体对定位性能影响的同时还能利用半静态物体中提供的定位信息提高定位性能。把动态物体的处理分为高动态物体的滤除和半静态物体的更新两部分。对于高动态物体滤除,考虑到定位系统的特性,提出延迟对比法和跟踪法相结合的动态物体检测方法;对于半静态物体的更新,采用位姿图优化加栅格地图覆盖的方式实现地图的动态更新。两种方法的结合让机器人能实现在动态环境中的长时间稳定定位。经过一系列实验和一年的实际运行表明:该方法能实现机器人在动态环境中的长时间定位,克服高动态物体的影响,同时让机器人的地图始终保持和当前环境一致。 Localization is one of the core technologies for mobile robots to achieve full autonomous movement and is a prerequisite for other autonomous tasks.The robot working environment is dynamic in most cases,so the localization algorithm must overcome the effects of dynamic changes in the environment.The paper proposes a localization algorithm that allows the robot to perform robust and life-long localization in dynamic environment.The algorithm can not only filter out high-dynamic objects but also update semi-static object on the map at the same time,and it can also use the information provided in semi-static objects to improve localization performance.In this paper,the processing of dynamic objects is divided into two parts:filtering of high-dynamic objects and updating of semi-static objects.For high dynamic object filtering,a dynamic object detection method combining a delay comparison method and a tracking method is proposed by observing the characteristics of localization system;for the update of semi-static objects,this paper uses the pose graph optimization and occupancy map to implement the dynamic update of the map.The combination of the two methods allows the robot to achieve long-term stable localization in a dynamic environment.The experimental results demonstrate that the proposed method allows the robot to achieve long-term localization,overcome the effects of high-dynamic objects and keep the map always consistent with the environment.
作者 黄山 黄洪钟 曾奇 钱华明 HUANG Shan;HUANG Hong-zhong;ZENG Qi;QIAN Hua-ming(Center for System Reliability and Safety,University of Electronic Science and Technology of China,Chengdu,611731;EvenTec Co.Ltd.,Chengdu,610097)
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2021年第3期382-390,共9页 Journal of University of Electronic Science and Technology of China
基金 国家重点研发计划(2017YFB1301300)。
关键词 动态环境 定位算法 地图更新 机器人 dynamic environment localization algorithm map update robotics
  • 相关文献

参考文献1

二级参考文献35

  • 1Barshan B, Durrant-Whyte H F. Inertial navigation systems for mobile robots [ J]. IEEE Transactions on Robotics and Automa- tion,1995,11 (3) :328 -342.
  • 2Borenstein J, Feng L. Measurement and correction of systematic odometry errors in mobile robots [ J ]. IEEE Transactions on Ro- botics and Automation, 1996,12 ( 6 ) :869 -880.
  • 3Ibraheem M. Gyroscope-enhanced dead reckoning localization sys- tem for an intelligent walker[ C ]/International Conference on In- formation ,Networking and Automation(ICINA) ,2010:67-72.
  • 4Cbo B,Moon W,Seo W, et al. A dead reckoning localization sys- tem for mobile robots using inertial sensors and wheel revolution encoding [ J ]. Journal of Mechanical Science and Technology, 2011,25 ( 11 ) :2907 -2917.
  • 5Konolige K, Marder-Eppstein E, Marthi B, et al. Navigation in hy- brid metric-topological maps [ C]//2011 IEEE International Con- ference on Robotics and Automation, Shanghai, China, 2011: 3041 -3047.
  • 6Ozkil A, Fan Z, Xiao J, et al. Practical indoor mobile robot naviga- tion using hybrid maps [ C ]//Proceedings of the 2011 IEEE Inter- national Conference on Mechatronics, Istanbul, Turkey, 2011: 475 -480.
  • 7Lee S, Lim J, Cho D. General feature extraction for mapping and lo- calization of a mobile robot using sparsely sampled sonar data[J]. Advanced Robotics ,2009,23 : 1601 -1616.
  • 8Choi J, Choi M, Chung W, et al. Topological localization with kid- nap recovery using sonar grid map matching in a home environ- ment [ J ]. Robotics and Computer-Integrated Manufacturing, 2012,28 (3) :366 -374.
  • 9Liu Y, Sun Y. Mobile robot instant indoor map building and local- ization using 2D laser scanning data [ C ]//International Confer- ence on System Science and Engineering, Dalian, China,2012: 339 -344.
  • 10Hornung A, Wurm K, Bennewitz M. Humanoid robot localization in complex indoor environments [ C ]//The 2010 IEEE/RSJ Inter- national Conference on Intelligent Robots and Systems, Taipei, Taiwan ,2010 : 1690 -1695.

共引文献31

同被引文献48

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部