期刊文献+

基于LMD-LSSVM的扬声器异音故障诊断方法研究 被引量:1

Research on Loudspeaker Abnormal Sound Fault Diagnosis Method Based on LMD and LSSVM
下载PDF
导出
摘要 文章采用局部均值分解(Local mean decomposition,LMD)和最小二乘支持向量机(Least squares support vector machine,LSSVM)相结合的方法进行扬声器异音故障诊断的研究。首先,选取正常扬声器与漏气、铁粉杂质、小音三种故障类型的扬声器作为研究对象,在实验平台上对上述四种类型扬声器施加激励信号。然后,获得不同类型的响应信号并对其进行LMD分解,得到一系列乘积函数(Product function,PF),求出它们的能量熵,构成特征向量。最后,将提取的特征值作为LSSVM模拟分类器的输入量进行训练和识别,诊断出扬声器的故障类型。实验结果表明,该方法可以有效地对扬声器异音进行故障诊断分类,诊断准确率平均达93.42%。 In this paper,the method of combining local mean decomposition(LMD)and least squares support vector machine(LSSVM)is used to study the speaker abnormal sound fault diagnosis.Firstly,the normal speakers and the speakers with air leakage,iron powder impurities and small sound faults are selected as the research objects,and the excitation signals are applied to the above four types of speakers on the experimental platform.Then,different types of response signals were obtained and LMD decomposition was carried out to obtain a series of product functions(PF),and their energy entropies were calculated to form eigenvectors.Finally,the extracted eigenvalues are used as the input of LSSVM simulation classifier for training and recognition,and the fault types of loudspeakers are diagnosed.The experimental results show that this method can effectively diagnose and classify speaker abnormal sound,and the average diagnostic accuracy is 93.42%.
出处 《大众科技》 2021年第4期1-4,共4页 Popular Science & Technology
基金 广西科技基地和人才专项“电动扬声器异音智能检测与自动分类系统开发”(桂科AD19110026)。
关键词 扬声器故障诊断 局部均值分解 能量熵 最小二乘支持向量机 fault diagnosis of loudspeaker local mean decomposition energy entropy least squares support vector machine
  • 相关文献

参考文献3

二级参考文献32

共引文献38

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部