期刊文献+

微生物tRNA与密码子系统应用研究进展 被引量:2

Progress in the Study of Microbial tRNA and Genetic Codon System Related Applications
原文传递
导出
摘要 tRNA作为生命中心法则中翻译过程的重要参与分子,其种类、丰度都会对蛋白质的正常合成产生巨大影响。近年来通过对微生物tRNA的结构功能以及合成修饰过程的解析获得诸多启发,开展密码子扩展的研究,实现将非天然氨基酸引入特定位置从而获得新功能蛋白。同时,通过化学合成微生物基因组开展的密码子重编码工作将释放更多的密码子与tRNA用于更加广泛的密码子扩展研究。对微生物tRNA与密码子系统在合成生物学中的最新应用研究进展进行了综述,并讨论其未来的发展趋势。 The tRNA are important molecules of the translation process in the central dogma of life.The type and abundance of tRNA have a huge impact on the synthesis of proteins.In recent years,many inspirations have been obtained through the analysis of the structure and function of microbial tRNA and the process of tRNA modification.Moreover,the study of genetic codon expansion has realized the incorporation of unnatural amino acids into specific positions to obtain new functional proteins.At the same time,the codon recoding work carried out through chemical synthesis of microbial genomes will release more codons and tRNAs for more genetic codon expansion research.This work reviewed the latest application research progress of microbial tRNA and codon system in synthetic biology,and discussed the future development trend.
作者 廖丹妮 张昭旸 靳瑾 李霞 贾斌 LIAO Dan-ni;ZHANG Zhao-yang;JIN Jin;LI Xia;JIA Bin(Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering.Ministry of Education,Tianjin University,Tianjin 300072,China)
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2021年第4期64-73,共10页 China Biotechnology
基金 国家重点研发计划(2018YFA0903702)资助项目。
关键词 TRNA 密码子扩展 非天然氨基酸 氨酰TRNA合成酶 tRNA Genetic codon expansion Unnatural amino acid Aminoacyl tRNA synthetase
  • 相关文献

参考文献3

二级参考文献38

  • 1Kane J F. Effects of rare codon clusters on highlevel expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol, 1995, 6(5): 494~500
  • 2Snider M D. Control of membrane lipid synthesis in Escherichia coli during growth and during the stringent response. J Biol Chem, 1979, 254(15): 7917~8202
  • 3O'Farrell P H. The suppression of defective translation by ppGpp and its role in the stringent response. Cell, 1978, 14(3): 545~557
  • 4Whitehead K E, Webber G M, England R R. Accumulation of ppGpp in Streptococcus pyogenes and Streptococcus rattus following amino acid starvation. FEMS Microbiol Lett, 1998, 159(1): 21~26
  • 5Vogel U, Sorensen M, Pedersen S, et al. Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation. Mol Microbiol, 1992, 6(15): 2191~2200
  • 6Harcum S W. Structured model to predict intracellular aminoacid shortages during recombinant protein overexpression in E. coli. J Biotechnol, 2002, 93(3): 189~202
  • 7Nystom T. Role of guanosine tetraphosphate in gene expression and the survival of glucose or seryl tRNA starved cells of Escherichia coli K12. Mol Gen Genet, 1994, 245(3): 355~362
  • 8Kuhar I, van Putten J P, Zgur Bertok D, et al. Codon usage based regulationof colicin K synthesis by the stress alarmone ppGpp. Mol Microbiol, 2001, 41(1): 207~216
  • 9Rocher E J D, Vargo Gogola T C, Diehn S H, et al. Direct evidence for rapiddegradation of Bacillus thuringiensis toxin mRNA as a cause of poor expression in plants. Plant Physiol, 1998, 117: 1445~1461
  • 10Weiss R B. Molecular model of ribosome frameshifting. Proc Natl Acad Sci USA, 1984, 81(18): 5797~5801

共引文献39

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部