期刊文献+

Quantum droplets in two-dimensional optical lattices 被引量:3

原文传递
导出
摘要 We study the stability of zero-vorticity and vortex lattice quantum droplets(LQDs),which are de-scribed by a two-dimensional(2D)Gross-Pitaevskii(GP)equation with a periodic potential and Lee-Huang-Yang(LHY)term.The LQDs are divided in two types:onsite-centered and offsite-centered LQDs,the centers of which are located at the minimum and the maximum of the potential,respec-tively.The stability areas of these two types of LQDs with diferent number of sites for zero-vorticity and vorticity with S=1 are given.We found that the μ-N relationship of the stable LQDs with a fixed number of sites can violate the Vakhitov-Kolokolov(VK)criterion,which is a necessary stability condition for nonlinear modes with an attractive interaction.Moreover,the μ-N relationship shows that two types of vortex LQDs with the same number of sites are degenerated,while the zero-vorticity LQDs are not degenerated.It is worth mentioning that the offsite-centered LQDs with zero-vorticity and vortex LQDs with S=1 are heterogeneous.
出处 《Frontiers of physics》 SCIE CSCD 2021年第2期13-22,共10页 物理学前沿(英文版)
基金 This work was supported by the National Natural Science Foundation of China(NNSFC)through Grant Nos.11905032 and 11874112 the Key Research Projects of General Col-leges in Guangdong Province through Grant No.2019KZDXM001 the Foundation for Distinguished Young Talents in Higher Educa-tion of Guangdong through Grant No.2018KQNCX279 the Special Funds for the Cultivation of Guangdong College Students Scientific and Technological Innovation(No.xsjj202005zra01).
  • 相关文献

参考文献6

二级参考文献78

  • 1Anderson M H, Matthews J R and Wieman C E 1995 Science 269 198.
  • 2Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463.
  • 3Anderson B P and Kasevich M A 1998 Science 282 1686.
  • 4Ovchinnikov Y B, Muller J H, Doery M R, Vredenbregt E J, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev. Lett. 83 284.
  • 5Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108.
  • 6Choi D I and Niu Q 1999 Phys. Rev. Lett. 82 2022.
  • 7Carr L D and Brand J 2004 Phys. Rev. A 70 033607.
  • 8Cornish S L, Claussen N R, Roberts J L, Cornell E A and Wieman C E 2000 Phys. Rev. Lett. 85 1795.
  • 9Qian C, Wang L L and Zhang J F 2011 Acta Phys. Sin. 60 064214 (in Chinese).
  • 10Burlak G and Malomed B A 2008 Phys. Rev. A 77 053606.

共引文献6

同被引文献5

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部