期刊文献+

Cohomology structure for a Poisson algebra:Ⅱ

原文传递
导出
摘要 For a Poisson algebra,we prove that the Poisson cohomology theory introduced by Flato et al.(1995)is given by a certain derived functor.We show that the(generalized)deformation quantization is equivalent to the formal deformation for Poisson algebras under certain mild conditions.Finally we construct a long exact sequence,and use it to calculate the Poisson cohomology groups via the Yoneda-extension groups of certain quasi-Poisson modules and the Lie algebra cohomology groups.
出处 《Science China Mathematics》 SCIE CSCD 2021年第5期903-920,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11401001,11871071,11431010 and 11571329)。
  • 相关文献

参考文献1

二级参考文献16

  • 1Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progress in Math., Vol. 118, Birkhiuser, Basel, 1994.
  • 2Xu, P.: Noncommutative Poisson algebras. Amer. J. Math., 116(1), 101-125 (1994).
  • 3Crawley-Boevey, W., Etingof, P., Ginzburg, V.: Noncommutative geometry and quiver algebras. Adv. Math., 209, 274-336 (2007).
  • 4Casas, J. M., Pirashvili, T.: Algebras with bracket. Manuscripta Math., 119, 1-15 (2006).
  • 5Flato, M., Gerstenhaber, M., Voronov, A. A.: Cohomology and deformation of Leibniz pairs. Lett. Math. Phys., 34, 77-90 (1995).
  • 6Farkas, D., Letzter, G.: Ring theory from symplectic geometry. J. Pure Appl. Algebra, 225, 255 290 (1998).
  • 7Kontsevich, M.: Formal (non)commutative symplectic geometry. The Gelfand Math. Seminars, Birkhuser, Boston, MA, 1990-1992, 173-187.
  • 8Loose, F.: Symplectic algebras and Poisson algebras. Comm. Algebra, 21(7), 2395-2416 (1993).
  • 9Reshetikhin, N., Voronov, A. A., Weinstein, A.: Semiquantum geometry. J. Math. Sci., 82(1), 3255-3267 (1996).
  • 10Van den Bergh, M.: Double Poisson algebras. Trans. Amer. Math. Soc., 360(11), 5711-5769 (2008).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部