摘要
以TiC、Ti、Al和V为原料,在1350℃下原位热压烧结制备了(Ti_(0.6)V_(0.4))_(3)AlC_(2)固溶体,研究了(Ti_(0.6)V_(0.4))_(3)AlC_(2)固溶体从室温至800℃的摩擦学性能,并用扫描电子显微镜和拉曼光谱仪分析了不同温度下磨损表面的微观形貌及化学组成.结果表明:(Ti_(0.6)V_(0.4))_(3)AlC_(2)固溶体在室温、200℃及800℃下的摩擦系数较Ti_(3)AlC_(2)均有显著降低.在室温和200℃时,(Ti_(0.6)V_(0.4))_(3)AlC_(2)磨损机制以磨粒磨损为主.在400℃和600℃时,磨损机制主要表现为塑性变形.由于800℃下氧化物润滑膜的生成,使得(Ti_(0.6)V_(0.4))_(3)AlC_(2)固溶体具有优异的高温自润滑性能,摩擦系数低至0.35,较Ti_(3)AlC_(2)降低了47.76%.
(Ti_(0.6)V_(0.4))_(3)AlC_(2)solid solutions were successfully synthesized at 1350℃by in situ hot-pressing method using Ti,Al,TiC,and V as raw materials.The friction and wear properties of the solid solutions were investigated from room temperature to 800℃,the morphologies and chemical composition of the(Ti_(0.6)V_(0.4))_(3)AlC_(2)worn surface at different temperatures were analyzed by scanning electron microscope and Raman spectrometer.The results show that the friction coefficient of(Ti_(0.6)V_(0.4))_(3)AlC_(2)solid solution is significantly lower than that of Ti_(3)AlC_(2) at room temperature,200℃and 800℃.As the temperature increases,the friction coefficient of(Ti_(0.6)V_(0.4))_(3)AlC_(2)first increases and then decreases.At 25℃and 200℃,abrasive wear is the main wear mechanism.At 400℃and 600℃,wear mechanisms were dominated by plastic deformation.At 800℃,the formation of oxide film with lubricating effect makes(Ti_(0.6)V_(0.4))_(3)AlC_(2)solid solution has excellent self-lubricating performance at high temperature,and the friction coefficient of(Ti_(0.6)V_(0.4))_(3)AlC_(2)solid solution is as low as 0.35,which is 47.76%lower than that of Ti_(3)AlC_(2).
作者
方媛
冯宇霞
刘小华
李晨
朱建锋
FANG Yuan;FENG Yu-xia;LIU Xiao-hua;LI Chen;ZHU Jian-feng(School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi′an 710021, China)
出处
《陕西科技大学学报》
北大核心
2021年第3期115-121,共7页
Journal of Shaanxi University of Science & Technology
基金
国家自然科学基金项目(51705300)
中国博士后科学基金项目(2018M643559)
陕西省科技厅自然科学基础研究计划项目(2019JQ-775)
陕西省教育厅专项科研计划项目(19JK0152)
陕西科技大学博士科研启动基金项目(2017BJ-05)。