期刊文献+

焦点位置对聚光太阳能反应器效率影响的研究 被引量:1

SIMULATION STUDY OF EFFECT OF FOCUS POSITION ON EFFICIENCY OF SOLAR THERMOCHEMICAL REACTOR
下载PDF
导出
摘要 以直吸式太阳能热化学反应器为研究对象,运用数值模拟的方法,以甲烷裂解反应为例,分析入射辐射焦点位置对反应效率的影响。使用反应转化率和化学储能效率为评价指标,结合氢气质量分数云图、辐射强度分布云图等进行分析。结果表明焦点位置越靠后,反应器的集热效果和反应效果越好,入射光线最大夹角从90°减至53°,反应转化率和化学储能效率的增长最明显,当入射光线最大夹角小于53°,随着角度的减小,反应的转化率和化学储能效率变化并不明显。该文研究结果可为直接吸收式太阳能热化学反应器及聚光器的设计提供参考。 Taking direct absorption solar thermochemical reactor as the research object,numerical simulation and UDF(user-defined function)is used to study how reactor efficiency changed at different focus position.For evaluating methane decomposition in solar reactor,some contours have been drawn and two efficiencies including reaction conversion rate and chemical energy storage efficiency have been calculated.It shows that the best efficiency can be achieved when beam direction is perpendicular to the incident surface on the reactor.The reaction conversion rate and thermochemical energy storage efficiency increase obviously when the angle between incident rays induces from 90°to 53°.In particular,when the position of focus is greater than 70 mm,the change of efficiency is not obvious with position moving forward.The length should be appropriate for the reactor.This work can provide a reference for the design of direct absorption solar thermochemical reactors and solar concentrators.
作者 孙全 朱群志 张涛 段芮 Sun Quan;Zhu Qunzhi;Zhang Tao;Duan Rui(College of Energy and Mechanical Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第4期299-306,共8页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51576119)。
关键词 太阳能 热化学反应 辐射换热 反应器 焦点位置 甲烷裂解 solar energy thermochemistry radiative transfer reactor focus position methane decomposition
  • 相关文献

参考文献4

二级参考文献48

  • 1王力军,张春雷,李爽,吴通好.尖晶石型铁酸盐的制备及表征研究[J].无机化学学报,1996,12(4):377-381. 被引量:17
  • 2Fletcher E,Moen R.Hydrogen and oxygen from water:The use of solar energy in a one-step effusional process is considered[J].Science,1977,197:1050-1056.
  • 3Nakamura T.Hydrogen production from water utilizing solar heat at high temperatures[J].Solar Energy,1977,19:467-475.
  • 4Ihara S.Feasibility of hydrogen production by direct water splitting at high temperature[J].Int J Hydrogen Energy,1978,(3):287-296.
  • 5Diver R,Fletcher E.Hydrogen and oxygen from water(Ⅱ)Some considerations in the reduction of the idea to practice[J].Energy,1979,(4):1139-1150.
  • 6Kogan A.Direct solar thermal splitting of water and on-site separation of the products (Ⅱ) Experimental feasibility study[J].Int J Hydrogen Energy,1998,23 (2):89-98.
  • 7Funk J E,Reinstrom R M.Energy requirements in the production of hydrogen from water[J].Industrial and Engineering Chemistry Process Design and Development,1966,5 (3):336-342.
  • 8廖晓恒.热化学循环的热力学基础[J].化学通报,1983,(3):35-39.
  • 9Funk J E.Thermochemical Hydrogen Production:Past and Present[A].Plenary Lecture 13th World Hydrogen Energy Conference[C],Beijing,China,June 11-15,2000.
  • 10Lundberg M.Model calculations on some feasible two-step water splitting processes[J].Int J Hydrogen Energy,1993,18 (5):369-76.

共引文献38

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部