期刊文献+

加权随机共振多路检测的无人机频谱感知算法 被引量:1

UAV spectrum sensing algorithm based on weighted stochastic resonance multiplexing detection
下载PDF
导出
摘要 为了提高能量检测算法在低信噪比环境下的检测性能,在广义随机共振能量检测算法的基础上,提出随机共振多路检测频谱感知算法与加权随机共振多路检测频谱感知算法。前者采用硬融合方式判决,后者定义主用户和次用户之间距离相关的权值系数,以软融合方式判决主用户占用频段的状态。仿真结果表明,当信噪比为-20 dB,虚警概率为0.2时,与广义随机共振能量检测算法和传统能量检测法相比,随机共振多路检测频谱感知算法的检测概率分别提高了5%和35%,加权随机共振多路检测频谱感知算法的检测概率分别提高了10%和45%,对微弱信号的检测性能均得到提高。 In order to improve the detection performance of energy detection algorithm in low SNR environment,a stochastic resonance multiplexing detection spectrum sensing algorithm and a weighted stochastic resonance multiplexing detection spectrum sensing algorithm are proposed,which are based on generalized stochastic resonance energy detection algorithm.The former uses hard fusion decision,while the latter defines the weight coefficient related to the distance between primary user and secondary user,and determines whether the primary user occupies the frequency band by soft fusion.The simulation results show that when the SNR is-20 dB and the false alarm probability is 0.2;compared with the generalized stochastic resonance energy detection algorithm and the traditional energy detection method,the detection probability of the stochastic resonance multiplexing detection spectrum sensing algorithm are increased by 5%and 35%respectively,and the detection probability of the weighted stochastic resonance multiplexing detection spectrum sensing algorithm are increased by 10%and 45%respectively.The detection performance of the weak signal is improved.
作者 范圆梦 刘顺兰 FAN Yuanmeng;LIU Shunlan(School of Electronic Information,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2021年第3期6-11,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(U1809201) 浙江省自然科学基金资助项目(LY18F010013)。
关键词 随机共振 频谱感知 多路检测 加权融合 stochastic resonance spectrum sensing multiplex detection weighted fusion
  • 相关文献

参考文献3

二级参考文献21

  • 1徐家品,杨智.基于随机矩阵特征值比的频谱感知改进算法[J].电波科学学报,2015,30(2):282-288. 被引量:11
  • 2MitolaJ, Gerald Q, MaguireJR. Cognitive radios. making soft?ware radios more personal] J] . IEEE Personal Communications, 1999,6(4): 13 - 18.
  • 3H Urkowitz. Energy detection of unknown deterministic signals[J].Proc IEEE, 1967,55(4) :523 - 531.
  • 4J Theiler, B R Foy. Effect of signal contamination in rnatched?filter detection of the signal on a cluttered background[J] . IEEE Geoscience and Remote Sensing Letters, 2006, 3 ( 1 ) : 98 -102.
  • 5J Lunden, S A Kassam, V Koivunen. Robust nonparametric cyclic correlation-based spectrum sensing for cognitive radio[J]. IEEE Transactions on Signal Processing, 2010, 58( 1): 38 - 52.
  • 6R Benzi, A Sutera, A Vulpiani. The mechanism of stochastic resonance[J] . Phys A, 1981, 14( 11): lA53 - lA57.
  • 7R P Morse, P Roper. Enhanced coding in a cochlear-implant model using additive noise: Aperiod stochastic resonance with tuningJ J] .Phys Rev E,2000,61(5) :5683 - 5692.
  • 8H Chen, P K Varshney, S M Kay,J H Michels. Theory of stochastic resonance effect in signal detection: partl- fixed de?teeters] J] . IEEE transactions on Signal Processing, 2007,55 (7) :3172 - 3185.
  • 9H Chen, P K Varshney. Theory of stochastic resonance effect in signal detection: part2- variable detectors[J] . IEEE Transactions on Signal Processing,2008,56(lO) :5031- 5041.
  • 10B McNamara, K Wilesenfeld. Theory of stochastic resonance[J] .Phys Rev A,Gen Phys, 1989,39(9) :4854 - 4869.

共引文献12

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部