期刊文献+

振动筛形态监测系统软件设计 被引量:1

Software Design of Vibrating Screen Shape Monitoring System
下载PDF
导出
摘要 为了有效降低工业生产中振动筛故障的发生,本文利用对振动筛原始振动信号进行数字信号分析及处理,获得振动形态。主要完成振动筛振动形态监测软件设计部分,该系统能够实现在监测过程中记录振动数据,实时计算出振动筛工作过程中的重要参数,结合振动形态的变化趋势和用户经验数值设定报警机制。从而判断振动设备是否故障,为企业节约生产成本。 In order to effectively reduce the occurrence of vibration screen failure in industrial production,this paper uses the digital signal analysis and processing of the original vibration signal of the vibration screen to obtain the vibration shape.The system can record the vibration data in the monitoring process,calculate the important parameters in the working process of the vibrating screen in real time,and set the alarm mechanism combined with the change trend of vibration shape and user experience.So as to judge whether the vibration equipment is faulty,and save the production cost for the enterprise.
作者 朱春燕 刘文泉 Zhu Chunyan;Liu Wenquan(Xi'an Business College,xi'an Shaanxi,710200;School of Automation,Northwestern Polytechnical University,Xi'an Shaanxi,710072)
出处 《电子测试》 2021年第11期75-76,89,共3页 Electronic Test
基金 陕西省教育厅科学研究计划专项项目(14JK2048)。
关键词 振动筛监测 数字信号处理 振动形态 vibrating screen monitoring digital signal processing vibration shape
  • 相关文献

参考文献2

二级参考文献16

  • 1沈建明,王启立,刘颀.通风机性能在线监测振动数据分析[J].江苏煤炭,2004(1):31-32. 被引量:4
  • 2Comon P. Independent component analysis: A new concept [J]. Signal Processing, 1994, 36(3): 287-314.
  • 3Xie S L, He Z S, and Fu Y L. A note on Stoners conjecture of blind signal separation [J]. Neural Computation, 2005, 17(2): 321-330.
  • 4Bofill P and Zibulevsky M. Underdetermined blind source separation using sparse representations [J]. Signal Processing, 2001, 81(11): 2353-2362.
  • 5Li Y Q, Cichocki A, and Amari S. Analysis of sparse representation and blind source separation [J]. Neural Computation, 2004, 16(6): 1193-1234.
  • 6Li Y Q, Amari S, and Cichocki A, et al.. Underdetermined blind source separation based on sparse representations [J]. IEEE Trans. on Signal Processing, 2006, 54(2): 423-437.
  • 7Michael S L and Terrence J S. Learning overcomplete representations [J]. Neural Computation, 2000, 12(2): 337-365.
  • 8He Z S and Cichocki A. K-EVD clustering and its applications to sparse component analysis [C]. Independent Component Analysis and Blind Signal Processing, Charleston SC, USA, Mar. 5-8, 2006: 90-97.
  • 9Vapnik V. The Nature of Statistical Learning Theory [M]. New York, Spring Verlag, 1995: 30-105.
  • 10Platt J C. Sequential minimal optimization A fast algorithm for training support vector machines [C]. In: SchOlkopf B, Burges C J C, and Smola A J. (Eds.): Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge, MA, 1998: 185-208.

共引文献7

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部