期刊文献+

轻量级的网络流量分类算法 被引量:1

Lightweight Algorithm for Network Traffic Classification
下载PDF
导出
摘要 网络流量分类根据流量特征在流量数据与应用类型之间建立映射,是网络规划与运维管理和网络安全领域的基本工作之一[1]。由于网络技术的快速发展及网络流量的急剧上升,针对网络流量快速而精确的自动化分类是十分必要且刻不容缓的。通过MobileNet[2]、ResNet[3]、DenseNet[4]、GoogleNet[5]等经典卷积神经网络的研究,文中提出了一种轻量级的网络流量分类算法,利用残差网络的短连接及嵌入与激励模块的设计思想及结构优势完成网络流量分类任务。通过实验对比结果表明,该算法显著降低训练时间和模型大小,具有良好的网络流量分类效果。 Network traffic classification refers to the establishment of mapping between traffic data and application types according to traffic characteristics,which is one of the basic tasks in the field of network operation and maintenance management and network security[1]. Due to the rapid development of network technology and the rapid increase of network traffic,rapid and accurate automatic classification of network traffic is very necessary and urgent. Through research on the four classic convolutional neural networks MobileNet[2],ResNet[3],DenseNet[4],and GoogleNet[5],a lightweight network traffic classification algorithm is proposed based on the design ideas and structural advantages of residual shortcut connection and Squeeze-and-Excitation module. The experimental results show that the algorithm proposed in this paper performs well on the task of network traffic classification,and significantly reduces the training time and model size.
作者 王洪鹏 李伟 李培林 邱泸谊 WANG Hong-peng;LI Wei;LI Pei-lin;QIU Lu-yi(The 29th Research Institute of China Electronic Technology Corporation,Chengdu 610036,China;University of Electronic Science and Technology of China,Chengdu 610054,China)
出处 《中国电子科学研究院学报》 北大核心 2021年第3期297-303,共7页 Journal of China Academy of Electronics and Information Technology
关键词 网络流量分类 深度学习 残差SE模块 残差短连接 raffic classification deep learning residual SE module residual shortcut connection
  • 相关文献

参考文献4

二级参考文献30

  • 1Ngalyen T T, Amlitage G. A Survey of Techniques for Inter- net Traffic Classification using Machine Learning [ J]. IEEE Communications Sm'veys & Tutorials, 2008, 10(4):56- 76.
  • 2Kim H, Claft' K C, Fomenkov M, et 'al. Internet traffic classification demystified: Myths, caveats, and the best practices[C]// Proceedings of 2008 ACM CoNEXT CoIffer- ence. New York: ACM, 2008:1 - 12.
  • 3Li Wei, Canini M, Moore A W, et al. Efficient application i- dentification and the temporal and spatial stability of classifica- lion .hema[ J]. Computer Networks,2009,53(6) :790 - 809.
  • 4Callado A, Kelener J, Sadok D, et al. Better network traffic identification through the independent combination of tech- niques[J]. Joum.,d of Network and Computer Applications, 2010,33(4) :433 - 446.
  • 5Dainotti A, Pescape A, Ciaffy K C. Issues and Future Direc- tions in Traffic Classification[J]. IEEE Network, 2012, 26 (1):35-40.
  • 6MooreA W, Zuev D. Intemet tr'e classification using Bayesian ana/ysis tee}miques[C]//Proceeddngs of' 2005 Inter- national Conference on Measurement and Modding of Computer Systens. Banff, AB, Canada: ACM, 2005: 50-60.
  • 7Schunoll C, Zander S. Network Measm'ement and Accounting Meter[ EB/OL]. [ 2013 - 04 - 08]. http://sourceforge. net/projects/netmate - meter/.
  • 8范明,咎红英,牛常勇.机器学习导论[M].北京:机械工业出版社,2009:230-231.
  • 9Viola P, Jones M. Robust real-time face detection[ J]. Inter- national Journal of Computer Vision,2004,57(2) : 137 - 154.
  • 10Gringoli F, Salgarelli L, Dusi M, et al. GT: picking up the truth from the grotmd for Internet traffie[ J]. ACM SIGCOMM Computer Communication Review, 2009,39(5) : 13 - 18.

共引文献99

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部