期刊文献+

基于Matlab求解时谐复系数弹性波方程的超弱变分方法 被引量:2

AN ULTRA WEAK VARIATIONAL FORMULATION FOR SOLVING TIME-HARMONIC ELASTIC WAVE EQUATIONS WITH COMPLEX WAVE COEFFICIENTS BASED ON MATLAB
下载PDF
导出
摘要 众所周知,弹性波方程被用来描述工程应用中的弹性波传输问题。高效数值求解弹性波方程是一个重要的研究课题。提出了基于平面波离散的间断有限元超弱变分法。首先,选取满足剖分单元上齐次偏微分方程和其对偶方程的解析解分别作为检验空间和测试空间,得到等价的间断有限元变分形式;然后分别定义二维空间下的矢量平面波检验离散空间和测试离散空间,进而得到离散变分形式。基于Matlab软件的数值实验验证了新算法具有较高的精度。 As is known,some engineering problems,such as the elastic wave transmission,can be described by the elastic wave equation.The efficient numerical algorithms for solving elastic wave equations are important.An ultra weak variational formulation based on the plane wave discretizations is proposed.First,by choosing the analytic solutions satisfying the homogeneous elastic wave equations and its adjoint equations to form the trial space and the test space,respectively,we obtain the equivalent Trefftz variational formulation;then we define the two-dimensional vector plane wave discretized trial space and test space to discretize the proposed continuous variational formulation.Numerical results based on Matlab have validated the proposed method.
作者 袁龙 赵茂先 YUAN Long;ZHAO Maoxian(College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,Shandong,China)
出处 《力学与实践》 北大核心 2021年第2期289-293,共5页 Mechanics in Engineering
基金 国家自然科学基金(11501529) 山东省自然科学基金面上项目(ZR2020MA046) 青岛市应用基础研究项目(17-1-1-9-jch)资助。
关键词 弹性波方程 超弱变分方法 平面波 elastic wave equations ultra weak variational formulation plane wave
  • 相关文献

参考文献1

二级参考文献32

  • 1J. Berenger, A perfectly matched layer for the absorption of electromagnetics waves, J. Comput. Phys., 114 (1994), 185-200.
  • 2J. Carcione, Ground-penetrating radar: wave theory and simulation in lossy anisotropic media, Geophysics, 61 (1996), 1664-1677.
  • 3O. Cessenat, Application d'une nouvelle formulation variationnelle aux equations d'ondes harmoniques. Problemes de Helmholtz 2D et de Maxwell 3D, PhD thesis, Universite Paris IX Dauphine, 1996.
  • 4O. Cessenat and B. Despres, Application of the ultra-weak variational formulation of elliptic PDEs to the 2-dimensional Helmholtz problem, SIAM J. Numer. Anal., 35 (1998), 255-299.
  • 5O. Cessenat and B. Despres, Using plane waves as base functions for solving time harmonic equations with the Ultra Weak Variational Formulation, J. Comput. Acoust., 11 (2003), 227-238.
  • 6W. Chew, Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.
  • 7F. Collino and P. Monk, Optimizing the perfectly matched layer, Comput. Method. Appl. Mech. Engrg., 164 (1998), 157-171.
  • 8F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), 2061-2090.
  • 9D. Colton, R. Kress and P. Monk, Inverse scattering from an orthotropic medium, J. Comput. Appl. Math., 81 (1997), 269-298.
  • 10Comsol, Homepage of COMSOL Multiphysics software, 2006, http://www. comsol. com.

共引文献4

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部