期刊文献+

具有强化学习策略的决策树算法 被引量:10

Decision tree algorithm with reinforcement learning strategy
下载PDF
导出
摘要 传统决策树在对不平衡数据进行分类时,提高正类的权重和舍弃部分负类的信息,造成负类的预测精度较低。文章引入强化学习思想,提出一种基于马尔可夫决策过程的改进决策树方法。根据马尔可夫决策过程、当前分裂特征的标准化互信息和马修斯相关系数作为信息增益率的奖励或者惩罚,形成新的特征选择标准。实验结果表明,与其他传统方法相比,改进的马尔可夫决策树对非平衡数据整体的预测精度及负类预测精度均有提高。 The traditional decision tree enhances the samples weight of positive class and discards some samples information of negative class when it classifies unbalanced data.That method results in low prediction accuracy of negative class.So,an improved decision tree method based on Markov decision process is proposed by introducing the reinforcement learning.According to the Markov decision process,the normalized mutual information and Matthews correlation coefficient of current splitting feature are taken as the reward parameter or punishment parameter of the information gain ratio,which becomes the new feature selection criterion.The experimental results show that the improved Markov decision tree algorithm increases the overall prediction accuracy and the prediction accuracy of negative class for unbalanced data compared with the traditional decision tree algorithms.
作者 于安池 储茂祥 杨永辉 董秀 YU Anchi;CHU Maoxiang;YANG Yonghui;DONG Xiu(School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114000, China;Department of Automotive Engineering, Yantai Automobile Engineering Professional College, Yantai 265500, China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第5期616-620,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(71771112) 辽宁省自然科学基金资助项目(20180550067) 辽宁省高等学校基本科研资助项目(2017LNQN11)。
关键词 决策树 不平衡数据 强化学习 标准化互信息 马修斯相关系数 decision tree unbalanced data reinforcement learning normalized mutual information Matthews correlation coefficient
  • 相关文献

参考文献9

二级参考文献57

  • 1李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 2韩慧,王文渊,毛炳寰.不均衡数据集中基于Adaboost的过抽样算法[J].计算机工程,2007,33(10):207-209. 被引量:13
  • 3Viola E Jones M. Fast and Robust Classification Using Asymmetric AdaBoost and a Detector Cascade[C]//Proc. of Advances in Neural Information Processing System. Cambridge, MA, USA: MIT Press, 2002:1311-1318.
  • 4MITCHELL T M. Machine Learning. New York, USA: McGraw- Hill Science, 1997.
  • 5QUINLAN J R. Induction of Decision Trees. Machine Learning, 1986, 1(1): 81-106.
  • 6WU X D, KUMAR V, QUINLAN J R, et al. Top 10 Algorithms in Data Mining. Knowledge and Information Systems, 2008, 14( 1 ) : 1-37.
  • 7BREIMAN L, FRIEDMAN J H, STONE C J, et al. Classification and Regression Trees. Monterey, USA: Chapman and Hall, 1984.
  • 8WANG X Z, YEUNG D S, TSANG E C. A Comparative Study on Heuristic Algorithms for Generating Fuzzy Decision Trees. IEEE Trans on Systems, Man, and Cybernetics ( Cybernetics ), 2001, 31(2) : 215-226.
  • 9HU Q H, GUO M Z, YU D R, et al. Information Entropy for Ordi- nal Classification. Science China( Information Sciences), 2010, 53 (6) : 1158-1200.
  • 10HU Q H, CHE X J, ZHANG L, et al. Rank Entropy-Based Deci- sion Trees for Monotonic Classification. IEEE Trans on Knowledge and Data Engineering, 2012, 24( 11 ) : 2052-2064.

共引文献219

同被引文献101

引证文献10

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部