期刊文献+

叶片覆冰对风电机组关键结构安全性的影响 被引量:2

Effect of Blades Icing on Safety of Key Structures of Wind Turbine
下载PDF
导出
摘要 为研究低温条件下叶片覆冰对风电机组关键部位振动频率、翼型气动性能、发电功率、极限载荷和疲劳载荷的影响,对某3.XMW风电机组在覆冰、未覆冰条件下,基于IEC61400-1标准、线性疲劳累计损伤理论、雨流循环计数法,通过仿真软件建立该机型覆冰、未覆冰两种模型并进行计算。计算结果表明,叶片覆冰导致叶片和塔筒振动降低,翼型升力系数降低,阻力系数升高,发电功率降低,覆冰条件下的叶根、旋转轮毂中心、固定轮毂中心、偏航中心、塔筒底部极限载荷和等效疲劳载荷增大,最大累计循环次数降低,其中叶片挥舞载荷增幅最大。研究成果可为叶片覆冰时机组优化提供参考。 In order to study the effects of blades icing on vibration frequency,aerodynamic performance of airfoil,power generation,ultimate load and fatigue load of key parts of wind turbine under low temperature conditions,based on IEC 61400-1 standard,the linear fatigue cumulative damage theory,and rain flow cycle counting method,simulation software was used to establish calculation models of 3.XMW wind turbine at the conditions of icing and non-icing.The results show that the blade ice coating causes the blade and tower barrel vibration frequency to decrease,the airfoil lift coefficient decreases,the drag coefficient increases,and the power generation decreases.Ultimate load and equivalent fatigue load at blades root increase,and the maximum cumulative cycle number decreases,the amplitude of blade swing load increases.The research provides a reference for unit optimization when the blade is covered with icing.
作者 王之东 袁凌 王小虎 张林中 马丽红 WANG Zhi-dong;YUAN Ling;WANG Xiao-hu;ZHANG Lin-zhong;MA Li-hong(Guodian United Power Technology Co.,Ltd.,Beijing 100039,China;State Key Laboratory of Wind Power Equipment and Control,Baoding 071000,China)
出处 《水电能源科学》 北大核心 2021年第5期184-188,共5页 Water Resources and Power
基金 国家能源集团科技项目(GJNY-18-10)。
关键词 叶片覆冰 风电机组 关键结构 仿真软件 气动性能 极限载荷 等效疲劳载荷 blades icing wind turbine key structure simulation software aerodynamic performance limit load equivalent fatigue load
  • 相关文献

参考文献3

二级参考文献21

  • 1Marshall L. Usage advice[EB/OL].http://wind.nrel.gov/designcodes/advice.html,2010.
  • 2Patrick J. AeroDyn theory manual[NREL/EL-500-36881][R].2005.
  • 3Simms D,Schreck S,Hand M. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel:A comparison of predictions to measurements[NREL/TP-500-29494][R].Golden,CO:National Renewable Energy Laboratory,2001.
  • 4Tangler J L. Nebulous art of using wind-tunnel airfoil data for predicting rotor performance[NREL/CP-500-31243][R].Golden,CO:National Renewable Energy Laboratory,2002.
  • 5Hansen Martin O L. Aerodynamics of wind turbines[M].London,Stealing,VA,2008.
  • 6Chaviaropoulos P K,Hansen M O L. Investigating threedimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver[J].Journal of Fluids Engineering,Transactions of the ASME,2000,(02):330-336.
  • 7Tangler J,Kocurek J D. Wind turbine post-stall airfoil performance characteristics guidelines for blade-element momentum methods[A].Reno,Nevada,CA,2005.
  • 8Timmer W A,van Rooij R P J O M. Some aspects of high angle-of attack flow on airfoils for wind turbine application[A].Copenhagen,2003.
  • 9Krumbein A. Navier-Stokes airfoil computation with automatic transition prediction using the DLR TAU code-A sensitivity study[A].Springer,Berlin,Heidelberg,2006.
  • 10Nebel C,Radespiel R,Wolf T. Transition prediction for 3D flows using a Reynolds-averaged Navier-Stokes code and N-factor methods[A].Orlando,Florida,2003.

共引文献9

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部