期刊文献+

未来工业互联网松耦合结构理论、分析、评估及实现平台 被引量:2

Future industrial Internet:Theory,analysis,evaluation of loosely coupled architecture and implementation platform
下载PDF
导出
摘要 为了解决人机物全要素安全可靠互联的系统复杂性难题,提出一种工业互联网松耦合系统结构,采用发布/订阅模式,通过多种模式的服务质量(QoS),实现全连接环境下的多维数据实时接入与处理。基于工业要素强度和信息熵中心性,构建了一种强度—信息熵中心性(SEC)评估算法,即复合中心性算法,计算系统的脆弱性与关键点。实例分析证明,SEC评估算法能够准确度量工业互联系统关键点,并在工业互联数据链平台CIMS_LINK实现该算法,通过计算系统成员SEC值并排序,监控关键成员状态,来保障松耦合联接下的工业互联系统稳定运行。 Industrial Internet enables the interconnection of everything including human,environment and machines.To solve the complex problem of safety and reliability of industrial interconnected system,a loosely coupled architecture was proposed.Adopting publish/subscribe model and quality of service of multiple modes,connecting and processing of the multi-dimensional data in real time was achieved.Based on the strength of industrial elements and the centrality of information entropy,a Strength-Entropy Centrality(SEC)evaluation algorithm named compound centrality algorithm was constructed to calculate the vulnerability and key points of the loosely coupled system.The experiment results showed that the proposed SEC evaluation algorithm could accurately measure the key points of industrial interconnected system,and the algorithm was employed to CIMS_LINK.System members were calculated and ranked according to the algorithm,and the state monitoring of key members was realized to ensure the stable operation of industrial interconnected system.
作者 赵骥 齐晓锐 吴教丰 吴澄 ZHAO Ji;QI Xiaorui;WU Jiaofeng;WU Cheng(National CIMS Engineering Technology Research Center,Tsinghua University,Beijing 100084,China;Yangtze Delta Region Institute of Tsinghua University,Jiaxing 314006,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2021年第5期1249-1255,共7页 Computer Integrated Manufacturing Systems
基金 国家重点研发计划资助项目(2020YFB171220) 浙江省重点研发计划资助项目(2021C03191)。
关键词 未来工业互联网 松耦合 复合中心性 强度—信息熵中心性 信息熵 future industrial Internet loose coupling compound centrality strength-entropy centrality information entropy
  • 相关文献

参考文献3

二级参考文献42

  • 1王林,张婧婧.复杂网络的中心化[J].复杂系统与复杂性科学,2006,3(1):13-20. 被引量:61
  • 2Clements, K., Haddad, R, 1972. Approximate estimation for systems with quantized data. IEEE Trans. Au?tom. Control, 17(2):235-239. [doi: 10.1109 /TAC.1972. 1099954].
  • 3Curry, RE., 1970. Estimation and Control with Quantized Measurements. MIT Research Monograph No. 60.
  • 4Curry, RE., Velde, W.V., Potter, J., 1970. Nonlinear esti?mation with quantized measurements--PCM, predictive quantization, and data compression. IEEE Trans. Inf. Theory, 16(2): 152-161. [doi.LO. 1109/TIT. 1970. 1054436j.
  • 5Duan, Z., Jilkov, V.P., Li, X.R, 2008. State Estimation with Quantized Measurements: Approximate MMSE Approach. Proc. 11th Int. Conf. on Information Fusion, p.1-6.
  • 6Fu, M., de Souza, C., 2009. State estimation for lin?ear discrete-time systems using quantized measure?ments. Automaiica, 45(12):2937-2945. [doi:10.1016/j. automatica.2009.09.033j.
  • 7Fu, M., Xie, L., 2009. Approximate estimation for systems with quantized data. IEEE Trans. Auiom. Control, 54(5):1165-1170. [doi:10.1109/TAC.2009.2017815] Gray, RM., Neuhoff, D.L., 1998. Quantization. IEEE Trans. Inf. Theory, 44(6):2325-2383. [doi:10.1109/18.720541].
  • 8Karlsson, R., Gustafsson, F., 2005a. Filtering and Esti?mation for Quantized Sensor Information. Technical Report LiTH-ISY-R2674, Department of Electrical En?gineering, Linkoping University, Linkoping, Sweden.
  • 9Karlsson, R., Gustafsson, F., 2005b. Particle Filtering for Quantized Sensor Information. Proc. 13th European Signal Processing Conf., p.1-4.
  • 10Max, J., 1960. Quantizing for minimum distortion. IEEE Trans. Inf. Theory, 6(1):7-12. [doi:1O.ll09/TIT.1960. 1057548].

共引文献42

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部