期刊文献+

Completion of R^(2)with a Conformal Metric as a Closed Surface

原文传递
导出
摘要 In this paper,we obtain some asy mptotic behav ior results for solutions to the prescribed Gaussian curvature equation.Moreover,we prove that under a con-formal metric in R^(2),if the total Gaussian curvature is 4π,the conformal area of R^(2)is finite and the Gaussian curvature is bounded,then R^(2)is a compact C^(l,α)surface after completion at∞,for anya∈(0,1).If the Gaussian curvature has a Holder decay at in-finity,then the completed surface is C^(2).For radial solutions,the same regularity holds if the Gaussian curvature has a limit at infinity.
出处 《Analysis in Theory and Applications》 CSCD 2021年第1期59-73,共15页 分析理论与应用(英文刊)
基金 This research is partially supported by NSF grant DMS-1601885 and DMS-1901914. Theauthors would like to thank Dong Ye for the remark regarding the negative answer ofQuestion 1.2.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部