期刊文献+

一种基于机器视觉的无人机同心圆靶精准降落方法 被引量:4

A precision landing method for unmanned aerial vehicle concentric round targets based on machine vision
下载PDF
导出
摘要 随着图像处理技术的发展、嵌入式硬件的进步,无人机(UAV)的机器视觉成为一个十分热门的研究领域。UAV自动降落控制是UAV飞行控制系统的关键技术之一,对UAV降落的稳定性、精确性、可靠性、实时性具有重要的作用。针对车载UAV自动返航降落误差大的缺点,通过机载视觉处理单元对UAV降落的平台进行图像处理后,将获取的UAV和降落平台的位置信息通过坐标转换算法转换为真实坐标信息,然后通过模拟遥控器杆量的方式来控制UAV实现精准降落。实验表明,利用所提出方法能够精准识别UAV降落平台,与只有GPS定位的实验结果相比,该方法能够有效地增加UAV降落的精度,具有一定的实际应用价值。 With the development of image processing technology and the progress of embedded hardware,machine vision of unmanned aerial vehicle(UAV)has become a very hot research field.Automatic landing control of UAV is one of the key technologies of UAV flight control system,which plays an important role in the stability,accuracy,reliability and real-time performance of UAV landing.Aiming at the shortcomings of vehicle-mounted UAV with large error in automatic return and landing,through the airborne visual processing unit,the landing platform of the UAV is processed by using image processing algorithm,and the acquired location information of the UAV and landing platform are converted into real coordinate information by using the coordinate conversion algorithm,and then the UAV is controlled to achieve precise landing by simulating the remote control lever.Experiment shows that the UAV landing platform can be accurately identified by using the proposed method.Compared with the experimental results of only GPS positioning,this method can effectively increase the accuracy of UAV landing and has certain practical application value.
作者 洪富祥 陈冲 丘仲锋 HONG Fuxiang;CHEN Chong;QIU Zhongfeng(School of Electronic&Information Engineering,Nanjing University of Information&Technology,Nanjing 210044,China;School of Marine Sciences,Nanjing University of Information&Technology,Nanjing 210044,China)
出处 《量子电子学报》 CAS CSCD 北大核心 2021年第3期307-315,共9页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金,41976165。
关键词 图像处理 机器视觉 自动返航 坐标转换算法 车载无人机 image processing machine vision automatic return coordinate conversion algorithm vehicle-mounted unmanned aerial vehicle
  • 相关文献

参考文献3

二级参考文献19

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2纪运红,张颖,吴庆洪.基于灰度图像的自适应背景模型运动物体检测算法比较研究[J].现代电子技术,2007,30(5):123-127. 被引量:5
  • 3Koenderink Jan J.Optic flow[J].Vision Research,1986,26(1):161-180.
  • 4Sundareswaran V.Egomotion from global flow field data[C]Proceedings of the IEEE Workshop on Visual Motion,Los Alamitos,USA,1991:140-145.
  • 5Zingg Simon,Scaramuzza Davide,Weiss Stephan,et al.MAV navigation through indoor corridors using optical flow[C]∥IEEE International Conference on Robotics and Automation,Anchorage,USA,2010:3361-3368.
  • 6Green W E,Oh P Y,Sevcik K,et al.Autonomous landing for indoor flying robots using optic flow[C]∥ASME International Mechanical Engineering Congress,2003.
  • 7Bortz J.A new mathematical formulation for strap down inertial navigation[J].IEEE Transactions on Aerospace and Electronic Systems(AES),1971,7(1):61-66.
  • 8现代应用数学手冊编委会.现代应用数学手册/概率统计与随机过程卷[M].北京:清华大学出版社,2000.
  • 9Maybeck P.Stochastic models estimations and control[M].New York:Academic Press,1982.
  • 10臧克,孙永华,李京,闫志壮,宫辉力,李小娟,赵文吉.微型无人机遥感系统在汶川地震中的应用[J].自然灾害学报,2010,19(3):162-166. 被引量:100

共引文献29

同被引文献44

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部