期刊文献+

月面可居住移动平台高能效比热泵系统研究 被引量:3

Study on High Energy Efficiency Ratio Heat Pump for Lunar Habitable Mobility Platform
下载PDF
导出
摘要 自人类首次踏上月球到半个世纪以后的今天,载人登月又成为各个航天大国近期的主要目标之一。不同于传统的月球探测器,中、长期的载人登月任务中热控系统将面临更加严峻的考验,常规的热控技术手段已经无法满足高温环境下的大功率热排散需求,急需发展基于热泵的新一代热控技术。本文以月面可居住移动平台的任务约束和散热需求为背景,提出了采用热泵系统的设计目标和运行条件,并在此基础上通过理论分析,对比了常见的15种制冷工质和4种热力循环形式下系统能效比的差异,最终结合月面可居住移动平台的设计约束提出采用R134a工质的单级压缩热泵系统是最佳的选择,为将来载人登月工程应用提供了设计支撑。 For half a century,manned lunar landing has become one of the primary goals for the power country in spaceflight since humans first set foot on the moon.Unlike traditional lunar exploration missions,the thermal control system will face severe challenges in midium and long-term manned lunar landing mission.Conventional thermal control technology can no longer meet the demand for high-power heat rejection in high-temperature environments,and it is urgently needed develop a new generation heat-pump-based thermal control technology.Based on the task constraints and heat rejection requirements of the lunar habitable mobile platform,this paper proposes the design goals and operating conditions of the heat pump,and it compares the energy efficiency ratio(COP)of 15 common refrigerants and 4 thermal cycle forms through theoretical analysis,and finally it is proposed that the single-stage compression heat pump with R134a is the best choice,which provides design support for future manned lunar landing projects.
作者 付振东 杨琦 吴琪 曹剑峰 徐侃 苗建印 FU Zhendong;YANG Qi;WU Qi;CAO Jianfeng;XU Kan;MIAO Jianyin(Beijing Key Laboratory on Space Thermal Control Technology,Beijing Institute of Spacecraft System Engineering,Beijing 100094,China)
出处 《真空与低温》 2021年第3期285-291,共7页 Vacuum and Cryogenics
关键词 月球 月面可居住移动平台 热泵 高能效比 lunar habitable mobility platform heat pump high energy efficiency ratio
  • 相关文献

参考文献3

二级参考文献24

  • 1Rengasamy P. High-power thermal management Issues in Space-Based system [A]. El Genk M S. Space Technology and Applications International Forum 2002 [C]. NewYork:American Institute of Physics, 2002. 65 - 71.
  • 2Olszewski M, Rockenfeller U. Heat Pump Augmented Radiator for Low-temperature Space Applications [R].Iecec889136, 1988. 379-383.
  • 3Kimar P, Stipandic E A. Thermal Design of the Communication Technology Sattellite [J]. AIAA Paper,1976, No. 76-458. 933-938.
  • 4Aidoun Z. Vapor Compression Heat Pump for a Lunar Lander/Rover Thermal Control [-R]. SAE961537. 856-864.
  • 5Emmen B F, Savage C J. Development of a vapor compression heat pump for space use [R]. AIAA-81-1113,1981.
  • 6Dexter P F, Haskin W L. Analysis of heat pump augmented systems for spacecraft thermal control [R]. AIAA-84-1757,1984.
  • 7Scaringe R, Buckman J, Grzyll L. Investigation of advanced heat pump augmented spacecraft heat rejection systems[R]. AIAA-89-0072, 1989.
  • 8Scaringe P, Grzyll L, Gregory S. Development of heat pump loop thermal control system for manned spacecraft habitats [R]. SAE2002-01-2467, 2002.
  • 9Space station thermal storage/refrigeration system research and development [R]. NASA CR-193841, 1993.
  • 10Hanford A J, Ewert M K. An assessment of advanced thermal control system technologies for future human space flight [R]. AIAA-96-1480, 1996.

共引文献18

同被引文献15

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部