摘要
考虑了四分之一平面内的热传导方程的侧边值问题,这类问题是严重不适定的.采用传统拟逆方法得到该问题的一个近似解,但发现它并不是一个正则化解.有趣的是,对解的分母项加以修正便可以得到侧边值问题的一个正则化解,进而提出了一种新的正则化方法,并分别给出先验和后验两种正则化参数选取规则下的H9lder型误差估计.数值实验验证了所提方法的可行性和有效性.
The seriously ill-posed sideways heat equations were considered in the quarter plane.The classical quasi-reversibility method was applied to acquire an approximate but non-regularized solution to the problem.Interestingly,a regularization solution to the sideways heat equation was obtained through modification of the denominator of the solution.Then,a new regularization method was proposed,and the H9 lder-type error estimates under a priori and a posteriori parameter choice rules were proved,respectively.Numerical experiments show the feasibility and effectiveness of the proposed method.
作者
柏恩鹏
熊向团
BAI Enpeng;XIONG Xiangtuan(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2021年第5期541-550,共10页
Applied Mathematics and Mechanics
基金
国家自然科学基金(11661072)。