摘要
研究由三个方程耦合的非线性Schrödinger方程组,它们源于非线性光学和Bose-Einstein凝聚.考虑了两种类型:含有周期位势的方程组和含有势阱位势的方程组.借助于广义的Nehari流形以及精细的能量估计,证明了当相互作用位势适当小时,这两类非线性Schrödinger方程组存在正的基态.
In this paper we consider a system of three coupled nonlinear Schrödinger equations,which comes from nonlinear optics and Bose-Einstein condensates.We deal with two types:systems with periodic potentials,and systems with trapping potentials.Using the generalized Nehari manifold and delicate energy estimates,we establish the existence of a positive ground state for either type provided that the interacting potentials are suitably small.
作者
陈新燕
刘海东
刘兆理
Chen Xinyan;Liu Haidong;Liu Zhaoli(School of Mathematical Sciences,Capital Normal University,Beijing 100048,China;Institute of Mathematics,Jiaxing University,Zhejiang 314001,China)
出处
《纯粹数学与应用数学》
2021年第1期1-24,共24页
Pure and Applied Mathematics
基金
国家自然科学基金(11701220,11926334,11926335,12031015,12026247,11671272)
浙江省自然科学基金(LY21A010020).