摘要
A type of supersonic fluidic oscillator is proposed and its ability to generate pulsating supersonic jet is proved in this paper.Unsteady two-dimensional numerical simulations reveal that the fluid transforms from subsonic to supersonic condition in the mixing chamber of oscillator after the supplied flow pressure increases from 1.1×105 Pa to 5.0×105 Pa.When the supersonic flow is formed inside the oscillator,the wall-attached flow represents expansion wave and compression wave alternately.The oscillating frequency will saturate to a certain value with the increase of supplied pressure.Examination of the internal fluid dynamics indicates that the flow direction inside the FeedBack Channel(FBC)is related to the change of the local pressure at the inlet and the outlet of the feedback channel.The vortices produced in the mixing chamber present different distribution characteristics with the change of the fluid’s direction in the FBC.The sweeping jet is divided into two jets with varying flow rate over time by the splitter.In the end of two channels,two jets are accelerated above sound speed by convergent-divergent nozzle.Therefore,pulsating supersonic jets are produced at two outlets for this type of fluidic oscillator.
基金
supported by the National Science and Technology Major Project(No.2017-III-0011-0037)。