期刊文献+

激光熔化沉积AlCoCrFeNi_(2.5)高熵合金的组织与力学性能研究 被引量:10

Investigation of Microstructures and Mechanical Properties of Laser-Melting-Deposited AlCoCrFeNi High Entropy Alloy
原文传递
导出
摘要 采用激光熔化沉积法制备AlCoCrFeNi_(2.5)高熵合金,通过X射线衍射仪、扫描电子显微镜、能谱仪、电子背散射衍射技术和力学拉伸测试研究合金的凝固组织、元素分布和力学性能。研究结果表明,通过激光熔化沉积法制备的AlCoCrFeNi_(2.5)高熵合金的微观组织为外延生长的柱状枝晶,其由一次和二次枝晶干处的面心立方(FCC)相与枝晶间隙处的体心立方(BCC)相组成。拉伸结果表明,在激光沉积方向,合金的抗拉强度达到1428 MPa,延伸率为25.8%。断口形貌显示出在FCC相区域观察到了大量的滑移轨迹,而位于枝晶间隙处的硬质BCC相能够有效阻碍滑移的扩展,使得FCC相中的位错密度进一步提高。拉伸变形过程中,合金内部组织中的FCC相与BCC相的耦合协同作用,可以促使AlCoCrFeNi_(2.5)高熵合金表现出优异的综合力学性能。 Objective Recently,with the development of laser technology,increasingly complex components of high entropy alloy(HEA)can be prepared using laser three-dimensional(3 D)printing technology.However,HEA prepared using this method exhibit low strength and plasticity.Therefore,AlCoCrFeNi_(2.5) HEA with high plasticity is introduced in laser melting deposition(LMD)technology,which is a laser 3 D printing technology.Herein,the microstructure and mechanical properties of AlCoCrFeNi_(2.5) HEA prepared using LMD are studied.We aim to fabricate HEA with excellent mechanical properties using the laser 3 D forming method.Methods LMD has been developed to synthesize AlCoCrFeNi_(2.5) HEA.The laser process parameters are as follows:laser power,scanning speed,powder feeding speed,shielding gas flow rate,spot diameter,defocusing amount,and lifting amount are 700 W,400 mm/min,8 g/min,5 L/min,2 mm,11 mm,and 0.25 mm,respectively.The material used for LMD is AlCoCrFeNi_(2.5) high entropy prealloyed powder(sphericity≥90%),and the range of the alloy particle size measured using the laser particle size analyzer is 45-105μm.The alloy powder is placed in a vacuum drying oven,heated to 1200 C,and retained for 2 h.Then,it is cooled to room temperature in a vacuum environment,poured into a powder feeder,and placed in a feeding barrel for standby.Further,a 316 L stainless steel plate with dimensions of 100 mm×60 mm×10 mm is selected as the base plate,and the oxide layer on the surface is removed using a grinder.Additionally,an electric spark cutting machine is used to cut the AlCoCrFeNi_(2.5) HEA samples into different sizes based on the test requirements.A heat setting machine is used to inlay the samples that required grinding and polishing.The samples are polished with 240#,400#,800#,1200#,2500#,4000#metallographic sandpaper and SiC polishing solution with particle size of 0.05μm and 0.02μm,respectively The appropriate amount of aqua regia is prepared to corrode the polished samples.The X-ray diffractometer(XRD)is used to perform phase analysis of the sample,and the metallographic microscope(OM)and scanning electron microscope(SEM)are used to observe the structure and fracture morphology of the sample.Moreover,an energy spectrometer(EDS)is used to perform surface analysis of the alloy samples scan to obtain the element distribution,and the electron backscatter diffraction device(EBSD)is employed to conduct crystallographic analysis of the alloy sample.The mechanical properties of the plate-shaped tensile sample are investigated using a tensile testing machine.Results and Discussions The surface of the AlCoCrFeNi_(2.5) HEA sample prepared using the LMD technology shows metallic luster without macro or microcracks.Compositional analysis revealed that AlCoCrFeNi_(2.5) HEA prepared using LMD exhibit epitaxy columnar dendrite textures,which are primarily composed of the face-centered cubic structure(FCC)at the primary and secondary dendrites and body-centered cubic structure(BCC)at the dendrite gap,respectively.The columnar dendrites grow along the maximum temperature gradient direction in the molten pool,which is parallel to the direction of the laser deposition(DD).The FCC phase located at the trunk of the dendrite grows preferentially along the<100>crystallographic direction.Stretching results show that the tensile strength and elongation of the alloy are 1428 MPa and 25.8%,respectively,along DD.In the laser scanning direction(SD),the yield strength,tensile strength,and elongation at break of the alloy are 586 MPa,1288 MPa,and 16.1%,respectively.Because columnar dendrites grow epitaxially along DD,DD shows fewer dendrite walls and phase boundaries than SD.Further,fewer"obstacles"are encountered b the dislocation slip during the stretching process,and it can store more dislocations to provide more plasticity and work-hardening ability;thus,the alloy shows more excellent mechanical properties in DD than in SD.The fracture morphology analysis revealed abundant dislocation slippages in the FCC phase region.The BCC phase located in the dendrite clearance effectively hinders the propagation of slippage during the deformation process,thereby further increasing the dislocation density in the FCC phase.Thus,the tensile sample undergoes continuous work hardening in the middle and late stages of deformation.Therefore,the high strength and ductility of AlCoCrFeNi_(2.5) HEA are primarily ascribed to the coupling synergy between the FCC and BCC phases.Conclusions Plate-like AlCoCrFeNi_(2.5) HEA samples with excellent comprehensive mechanical properties are prepared using the LMD technology.The alloy prepared using this method exhibits a uniformly distributed structure,no component segregation,and excellent comprehensive mechanical properties.The addition of the Ni element to the AlCoCrFeNi2.1 eutectic HEA(EHEA)leads to the uniform precipitation of the BCC hard phase only in the dendrite gap,thus ensuring high strength and good plasticity of the alloy.The tensile strength and elongation of the alloy reach 1428 MPa and 25.8%,respectively.The solidification structure of the plate-like AlCoCrFeNi_(2.5) HEA sample prepared using LMD shows columnar dendrite with epitaxial growth.The columnar dendrites grow along the maximum temperature gradient direction in the molten pool,which is parallel to DD.The FCC phase at the dendrite stem grows preferentially along the<100>crystallographic direction.This study provides a new strategy for controlling the microstructure of dual phase HEAs and preparing HEA with high strength and plasticity.
作者 黄留飞 孙耀宁 季亚奇 吴昌贵 乐国敏 刘学 李晋锋 Huang Liufei;Sun Yaoning;Ji Yaqi;Wu Changgui;Le Guomin;Liu Xue;Li Jinfeng(School of Mechanical Engineering,Xinjiang University,Urumqi,Xinjiang 830047,China;Institute of Materials,China Academy of Engineering Physics,Mianyang,Sichuan 621907,China;College of Physics,Sichuan University,Chengdu,Sichuan 610064,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2021年第6期97-104,共8页 Chinese Journal of Lasers
基金 中国工程物理研究院院长基金(YZJJLX2019010) 中国工程物理研究院创新基金(CX2019020) 新疆维吾尔自治区高校科研计划(XJEDU2019I005)。
关键词 材料 激光熔化沉积 高熵合金 微观组织 拉伸性能 laser technology materials laser melting deposition high entropy alloy microstructure tensile test
  • 相关文献

参考文献5

二级参考文献59

  • 1王海杰,王佳,彭欣,山川.钛合金在3.5%NaCl溶液中的腐蚀行为[J].中国腐蚀与防护学报,2015,35(1):75-80. 被引量:27
  • 2张霜银,林鑫,陈静,张凤英,黄卫东.工艺参数对激光快速成形TC4钛合金组织及成形质量的影响[J].稀有金属材料与工程,2007,36(10):1839-1843. 被引量:58
  • 3R. E. Hanneman, T. R. Anthony, Acta Metall. 17 (1969) 1133-1140.
  • 4A. A. F. Tavassoli, E. Diegele, R. Lindau, N. Luzginova, H. Tan- igawa, J. Nucl. Mater. 455 (2014) 269-276.
  • 5Y. Sekio, S. Yamashita, N. Sakaguchi, H. Takahashi, Mater. Trans. 55 (2014) 438-442.
  • 6S. I. Choi, Irradiation Growth Modeling of Zirconium in Nuclear Re- actors, Graduate School of UN1ST, Korea, 2014.
  • 7M. Griffiths, J. Nucl. Mater. 159 (1988) 190-218.
  • 8A. Nikulina, V. MarkeIov, M. Peregud, Zirconium Alloy E635 as a Material for FueI Rod Cladding and Other Components of VVER and RBMK Cores, American Society for Testing and Materials, West Conshohocken. PA. USA. 1996.
  • 9J. W. Yeh, S. K. Chert, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. 3(. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
  • 10C. Y. Hsu, J. W. Yeh, S. K. Chen, T. T. Shun, Metall. Mater. Trans. A. 35 (2004) 1465-1469.

共引文献63

同被引文献94

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部