摘要
基于深度学习神经网络模型,结合拖拉机在线监测数据和故障数据,提出了一种新的故障诊断方法。该方法采用神经网络学习理论和大数据分析能力,通过样本数据的训练诊断出拖拉机各种运行状态的电气故障,为工作人员决定是否对电气系统进行检修提供更多参考信息。以拖拉机电压调节器故障诊断为例,对神经网络深度学习理论故障诊断的准确性进行了验证,结果表明:采用神经网络深度学习理论,在相同条件下具有更高的故障诊断准确率。
Based on the deep learning neural network model, it proposed a new fault diagnosis method, which combines the tractor line monitoring data and fault data. This method adopts the learning theory of neural network and the ability of large data analysis. It can diagnose the electrical faults of tractors in various operating states through training of sample data, and provide more reference information for staff to decide whether to overhaul the electrical system. Finally, taking the tractor voltage regulator fault diagnosis as an example, it verified the accuracy of fault diagnosis based on neural network deep learning theory. The test results show that the neural network deep learning theory has higher fault diagnosis accuracy under the same conditions.
作者
王素芳
谢芳
Wang Sufang;Xie Fang(School of Information Engineering,Jiaozuo Normal College,Jiaozuo 454000,China)
出处
《农机化研究》
北大核心
2021年第6期264-268,共5页
Journal of Agricultural Mechanization Research
基金
河南省高等学校重点科研计划项目(19A520040)。
关键词
拖拉机
电气故障
深度学习
神经网络
大数据
tractor
electrical fault
learning in-depth
neural network
big data